|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""EpiClassify4GARD dataset.""" |
|
|
|
|
|
import csv |
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
|
|
_DESCRIPTION = """\ |
|
INSERT DESCRIPTION |
|
""" |
|
_CITATION = """\ |
|
John JN, Sid E, Zhu Q. Recurrent Neural Networks to Automatically Identify Rare Disease Epidemiologic Studies from PubMed. AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:325-334. PMID: 34457147; PMCID: PMC8378621. |
|
""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/epi_classify_dataset/train.tsv" |
|
_VAL_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/epi_classify_dataset/val.tsv" |
|
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/epi_classify_dataset/test.tsv" |
|
|
|
|
|
class EpiClassify4GARD(datasets.GeneratorBasedBuilder): |
|
"""EpiClassify4GARD text classification dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"abstract": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["1 = IsEpi", "0 = IsNotEpi"]), |
|
} |
|
), |
|
homepage="https://github.com/ncats/epi4GARD/tree/master/Epi4GARD#epi4gard", |
|
citation=_CITATION, |
|
task_templates=[TextClassification(text_column="abstract", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
val_path = dl_manager.download_and_extract(_VAL_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path }), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
next(csv_reader) |
|
for id_, row in enumerate(csv_reader): |
|
abstract = row[0] |
|
label = row[1] |
|
yield id_, {"abstract": abstract, "label": int(label)} |