nateraw commited on
Commit
ef44f5f
1 Parent(s): d30bb57

Create imagenette.py

Browse files
Files changed (1) hide show
  1. imagenette.py +129 -0
imagenette.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from pathlib import Path
3
+
4
+ import datasets
5
+ from datasets.tasks import ImageClassification
6
+
7
+
8
+ _CITATION = """
9
+ @misc{imagenette,
10
+ author = "Jeremy Howard",
11
+ title = "imagenette",
12
+ url = "https://github.com/fastai/imagenette/"
13
+ }
14
+ """
15
+
16
+ _DESCRIPTION = """\
17
+ Imagenette is a subset of 10 easily classified classes from the Imagenet
18
+ dataset. It was originally prepared by Jeremy Howard of FastAI. The objective
19
+ behind putting together a small version of the Imagenet dataset was mainly
20
+ because running new ideas/algorithms/experiments on the whole Imagenet take a
21
+ lot of time.
22
+ This version of the dataset allows researchers/practitioners to quickly try out
23
+ ideas and share with others. The dataset comes in three variants:
24
+ * Full size
25
+ * 320 px
26
+ * 160 px
27
+ Note: The v2 config correspond to the new 70/30 train/valid split (released
28
+ in Dec 6 2019).
29
+ """
30
+
31
+ _LABELS_FNAME = "image_classification/imagenette_labels.txt"
32
+ _URL_PREFIX = "https://s3.amazonaws.com/fast-ai-imageclas/"
33
+
34
+ LABELS = [
35
+ "n01440764",
36
+ "n02102040",
37
+ "n02979186",
38
+ "n03000684",
39
+ "n03028079",
40
+ "n03394916",
41
+ "n03417042",
42
+ "n03425413",
43
+ "n03445777",
44
+ "n03888257"
45
+ ]
46
+
47
+ class ImagenetteConfig(datasets.BuilderConfig):
48
+ """BuilderConfig for Imagenette."""
49
+
50
+ def __init__(self, size, base, **kwargs):
51
+ super(ImagenetteConfig, self).__init__(
52
+ # `320px-v2`,...
53
+ name=size + ("-v2" if base == "imagenette2" else ""),
54
+ description="{} variant.".format(size),
55
+ **kwargs)
56
+ # e.g. `imagenette2-320.tgz`
57
+ self.dirname = base + {
58
+ "full-size": "",
59
+ "320px": "-320",
60
+ "160px": "-160",
61
+ }[size]
62
+
63
+
64
+ def _make_builder_configs():
65
+ configs = []
66
+ for base in ["imagenette2", "imagenette"]:
67
+ for size in ["full-size", "320px", "160px"]:
68
+ configs.append(ImagenetteConfig(base=base, size=size))
69
+ return configs
70
+
71
+
72
+ class Imagenette(datasets.GeneratorBasedBuilder):
73
+ """A smaller subset of 10 easily classified classes from Imagenet."""
74
+
75
+ VERSION = datasets.Version("1.0.0")
76
+
77
+ BUILDER_CONFIGS = _make_builder_configs()
78
+
79
+ def _info(self):
80
+ return datasets.DatasetInfo(
81
+ # builder=self,
82
+ description=_DESCRIPTION,
83
+ features=datasets.Features({
84
+ "image_file_path": datasets.Value("string"),
85
+ "labels": datasets.ClassLabel(names=LABELS)
86
+ }),
87
+ supervised_keys=("image_file_path", "labels"),
88
+ homepage="https://github.com/fastai/imagenette",
89
+ citation=_CITATION,
90
+ task_templates=[
91
+ ImageClassification(
92
+ image_file_path_column="image_file_path", label_column="labels", labels=LABELS
93
+ )
94
+ ],
95
+ )
96
+
97
+ def _split_generators(self, dl_manager):
98
+ """Returns SplitGenerators."""
99
+ print(self.__dict__.keys())
100
+ print(self.config)
101
+ dirname = self.config.dirname
102
+ url = _URL_PREFIX + "{}.tgz".format(dirname)
103
+ path = dl_manager.download_and_extract(url)
104
+ train_path = os.path.join(path, dirname, "train")
105
+ val_path = os.path.join(path, dirname, "val")
106
+ assert os.path.exists(train_path)
107
+ return [
108
+ datasets.SplitGenerator(
109
+ name=datasets.Split.TRAIN,
110
+ gen_kwargs={
111
+ "datapath": train_path,
112
+ },
113
+ ),
114
+ datasets.SplitGenerator(
115
+ name=datasets.Split.VALIDATION,
116
+ gen_kwargs={
117
+ "datapath": val_path,
118
+ },
119
+ ),
120
+ ]
121
+
122
+ def _generate_examples(self, datapath):
123
+ """Yields examples."""
124
+ for path in Path(datapath).glob("**/*.JPEG"):
125
+ record = {
126
+ "image_file_path": str(path),
127
+ "labels": path.parent.name
128
+ }
129
+ yield path.name, record