arminmehrabian
commited on
Update READM for version v1.0.1
Browse files
README.md
CHANGED
@@ -24,9 +24,9 @@ Each file in the dataset has a SHA-256 checksum to verify its integrity:
|
|
24 |
|
25 |
| File Name | SHA-256 Checksum |
|
26 |
|----------------------------|---------------------------------------------------------------------------|
|
27 |
-
| `graph.cypher` | `
|
28 |
-
| `graph.graphml` | `
|
29 |
-
| `graph.json` | `
|
30 |
|
31 |
### Verification
|
32 |
|
@@ -181,23 +181,38 @@ The knowledge graph includes several relationship types that define how nodes ar
|
|
181 |
|
182 |
## Statistics
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
## Data Formats
|
203 |
|
@@ -211,12 +226,140 @@ The Knowledge Graph Dataset is available in three formats:
|
|
211 |
|
212 |
#### Loading the JSON Format
|
213 |
|
214 |
-
To load the JSON file into a graph database
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
```cypher
|
217 |
-
CALL apoc.load.json("path/to/graph.json") YIELD value
|
218 |
-
MERGE (n {id: value.id, label: value.label})
|
219 |
-
SET n += value.properties
|
220 |
```
|
221 |
|
222 |
### 2. GraphML
|
@@ -360,7 +503,7 @@ Please cite the dataset as follows:
|
|
360 |
```bibtex
|
361 |
@misc {nasa_goddard_earth_sciences_data_and_information_services_center__(ges-disc)_2024,
|
362 |
author = { {NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC)} },
|
363 |
-
title = { nasa-eo-knowledge-graph
|
364 |
year = 2024,
|
365 |
url = { https://huggingface.co/datasets/nasa-gesdisc/nasa-eo-knowledge-graph },
|
366 |
doi = { 10.57967/hf/3463 },
|
|
|
24 |
|
25 |
| File Name | SHA-256 Checksum |
|
26 |
|----------------------------|---------------------------------------------------------------------------|
|
27 |
+
| `graph.cypher` | `d78f7b166a86be3ceec16db75a1575dac95249af188b1d2e2adab7388a8e654a` |
|
28 |
+
| `graph.graphml` | `a781e358b338a181db5081a50127325febab67dcb283cb4124c877bf06de439e` |
|
29 |
+
| `graph.json` | `4794fd070953b3544ba3c841f13155f1cf8a1ca9abd1b240bbfaf482ce2cde32` |
|
30 |
|
31 |
### Verification
|
32 |
|
|
|
181 |
|
182 |
## Statistics
|
183 |
|
184 |
+
# Data Statistics
|
185 |
+
|
186 |
+
## Total Counts
|
187 |
+
| Type | Count |
|
188 |
+
|----------------------|---------|
|
189 |
+
| **Total Nodes** | 135,764 |
|
190 |
+
| **Total Relationships** | 365,857 |
|
191 |
+
|
192 |
+
## Node Label Counts
|
193 |
+
| Node Label | Count |
|
194 |
+
|-------------------|----------|
|
195 |
+
| Dataset | 6,390 |
|
196 |
+
| DataCenter | 184 |
|
197 |
+
| Project | 333 |
|
198 |
+
| Platform | 442 |
|
199 |
+
| Instrument | 867 |
|
200 |
+
| ScienceKeyword | 1,609 |
|
201 |
+
| Publication | 125,939 |
|
202 |
+
|
203 |
+
## Relationship Label Counts
|
204 |
+
| Relationship Label | Count |
|
205 |
+
|---------------------------|-----------|
|
206 |
+
| HAS_DATASET | 9,017 |
|
207 |
+
| OF_PROJECT | 6,049 |
|
208 |
+
| HAS_PLATFORM | 9,884 |
|
209 |
+
| HAS_INSTRUMENT | 2,469 |
|
210 |
+
| HAS_SUBCATEGORY | 1,823 |
|
211 |
+
| HAS_SCIENCEKEYWORD | 20,436 |
|
212 |
+
| CITES | 208,670 |
|
213 |
+
| HAS_APPLIED_RESEARCH_AREA| 89,039 |
|
214 |
+
| USES_DATASET | 18,470 |
|
215 |
+
|
216 |
|
217 |
## Data Formats
|
218 |
|
|
|
226 |
|
227 |
#### Loading the JSON Format
|
228 |
|
229 |
+
To load the JSON file into a graph database using Python and multiprocessing you can using the following script:
|
230 |
+
|
231 |
+
```python
|
232 |
+
import json
|
233 |
+
from tqdm import tqdm
|
234 |
+
from collections import defaultdict
|
235 |
+
from multiprocessing import Pool, cpu_count
|
236 |
+
from neo4j import GraphDatabase
|
237 |
+
|
238 |
+
# Batch size for processing
|
239 |
+
BATCH_SIZE = 100
|
240 |
+
|
241 |
+
# Neo4j credentials (replace with environment variables or placeholders)
|
242 |
+
NEO4J_URI = "bolt://<your-neo4j-host>:<port>" # e.g., "bolt://localhost:7687"
|
243 |
+
NEO4J_USER = "<your-username>"
|
244 |
+
NEO4J_PASSWORD = "<your-password>"
|
245 |
+
|
246 |
+
|
247 |
+
def ingest_data(file_path):
|
248 |
+
# Initialize counters and label trackers
|
249 |
+
node_label_counts = defaultdict(int)
|
250 |
+
relationship_label_counts = defaultdict(int)
|
251 |
+
node_count = 0
|
252 |
+
relationship_count = 0
|
253 |
+
|
254 |
+
with open(file_path, "r") as f:
|
255 |
+
nodes = []
|
256 |
+
relationships = []
|
257 |
+
|
258 |
+
# Read and categorize nodes and relationships, and count labels
|
259 |
+
for line in tqdm(f, desc="Reading JSON Lines"):
|
260 |
+
obj = json.loads(line.strip())
|
261 |
+
if obj["type"] == "node":
|
262 |
+
nodes.append(obj)
|
263 |
+
node_count += 1
|
264 |
+
for label in obj["labels"]:
|
265 |
+
node_label_counts[label] += 1
|
266 |
+
elif obj["type"] == "relationship":
|
267 |
+
relationships.append(obj)
|
268 |
+
relationship_count += 1
|
269 |
+
relationship_label_counts[obj["label"]] += 1
|
270 |
+
|
271 |
+
# Print statistics
|
272 |
+
print("\n=== Data Statistics ===")
|
273 |
+
print(f"Total Nodes: {node_count}")
|
274 |
+
print(f"Total Relationships: {relationship_count}")
|
275 |
+
print("\nNode Label Counts:")
|
276 |
+
for label, count in node_label_counts.items():
|
277 |
+
print(f" {label}: {count}")
|
278 |
+
print("\nRelationship Label Counts:")
|
279 |
+
for label, count in relationship_label_counts.items():
|
280 |
+
print(f" {label}: {count}")
|
281 |
+
print("=======================")
|
282 |
+
|
283 |
+
# Multiprocess node ingestion
|
284 |
+
print("Starting Node Ingestion...")
|
285 |
+
node_batches = [nodes[i : i + BATCH_SIZE] for i in range(0, len(nodes), BATCH_SIZE)]
|
286 |
+
with Pool(processes=cpu_count()) as pool:
|
287 |
+
list(
|
288 |
+
tqdm(
|
289 |
+
pool.imap(ingest_nodes_batch, node_batches),
|
290 |
+
total=len(node_batches),
|
291 |
+
desc="Ingesting Nodes",
|
292 |
+
)
|
293 |
+
)
|
294 |
+
|
295 |
+
# Multiprocess relationship ingestion
|
296 |
+
print("Starting Relationship Ingestion...")
|
297 |
+
relationship_batches = [
|
298 |
+
relationships[i : i + BATCH_SIZE]
|
299 |
+
for i in range(0, len(relationships), BATCH_SIZE)
|
300 |
+
]
|
301 |
+
with Pool(processes=cpu_count()) as pool:
|
302 |
+
list(
|
303 |
+
tqdm(
|
304 |
+
pool.imap(ingest_relationships_batch, relationship_batches),
|
305 |
+
total=len(relationship_batches),
|
306 |
+
desc="Ingesting Relationships",
|
307 |
+
)
|
308 |
+
)
|
309 |
+
|
310 |
+
|
311 |
+
def ingest_nodes_batch(batch):
|
312 |
+
with GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD)) as driver:
|
313 |
+
with driver.session() as session:
|
314 |
+
for node in batch:
|
315 |
+
try:
|
316 |
+
label = node["labels"][0] # Assumes a single label per node
|
317 |
+
query = f"""
|
318 |
+
MERGE (n:{label} {{globalId: $globalId}})
|
319 |
+
SET n += $properties
|
320 |
+
"""
|
321 |
+
session.run(
|
322 |
+
query,
|
323 |
+
globalId=node["properties"]["globalId"],
|
324 |
+
properties=node["properties"],
|
325 |
+
)
|
326 |
+
except Exception as e:
|
327 |
+
print(
|
328 |
+
f"Error ingesting node with globalId {node['properties']['globalId']}: {e}"
|
329 |
+
)
|
330 |
+
|
331 |
+
|
332 |
+
def ingest_relationships_batch(batch):
|
333 |
+
with GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD)) as driver:
|
334 |
+
with driver.session() as session:
|
335 |
+
for relationship in batch:
|
336 |
+
try:
|
337 |
+
rel_type = relationship[
|
338 |
+
"label"
|
339 |
+
] # Use the label for the relationship
|
340 |
+
query = f"""
|
341 |
+
MATCH (start {{globalId: $start_globalId}})
|
342 |
+
MATCH (end {{globalId: $end_globalId}})
|
343 |
+
MERGE (start)-[r:{rel_type}]->(end)
|
344 |
+
"""
|
345 |
+
session.run(
|
346 |
+
query,
|
347 |
+
start_globalId=relationship["start"]["properties"]["globalId"],
|
348 |
+
end_globalId=relationship["end"]["properties"]["globalId"],
|
349 |
+
)
|
350 |
+
except Exception as e:
|
351 |
+
print(
|
352 |
+
f"Error ingesting relationship with label {relationship['label']}: {e}"
|
353 |
+
)
|
354 |
+
|
355 |
+
|
356 |
+
if __name__ == "__main__":
|
357 |
+
# Path to the JSON file
|
358 |
+
JSON_FILE_PATH = "<path-to-your-graph.json>"
|
359 |
+
|
360 |
+
# Run the ingestion process
|
361 |
+
ingest_data(JSON_FILE_PATH)
|
362 |
|
|
|
|
|
|
|
|
|
363 |
```
|
364 |
|
365 |
### 2. GraphML
|
|
|
503 |
```bibtex
|
504 |
@misc {nasa_goddard_earth_sciences_data_and_information_services_center__(ges-disc)_2024,
|
505 |
author = { {NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC)} },
|
506 |
+
title = { nasa-eo-knowledge-graph },
|
507 |
year = 2024,
|
508 |
url = { https://huggingface.co/datasets/nasa-gesdisc/nasa-eo-knowledge-graph },
|
509 |
doi = { 10.57967/hf/3463 },
|