Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
100K<n<1M
License:
File size: 4,752 Bytes
820660d 946738b 820660d 6c33dc8 820660d 946738b 673a510 820660d 673a510 820660d 1962b7c 820660d 673a510 820660d 673a510 098daae 946738b 673a510 820660d 2fd0c64 820660d 946738b 820660d 39c7f3b 820660d 946738b 39c7f3b 946738b 820660d 946738b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
"""New York Times Ingredient Phrase Tagger Dataset"""
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{nytimesTaggedIngredients,
author = {Erica Greene and Adam Mckaig},
title = {{O}ur {T}agged {I}ngredients {D}ata is {N}ow on {G}it{H}ub --- archive.nytimes.com},
howpublished = {\\url{https://archive.nytimes.com/open.blogs.nytimes.com/2016/04/27/structured-ingredients-data-tagging/}},
year = {},
note = {[Accessed 03-10-2023]},
}
"""
_DESCRIPTION = """\
New York Times Ingredient Phrase Tagger Dataset
We use a conditional random field model (CRF) to extract tags from labelled training data, which was tagged by human news assistants.
e wrote about our approach on the [New York Times Open blog](http://open.blogs.nytimes.com/2015/04/09/extracting-structured-data-from-recipes-using-conditional-random-fields/).
This repo contains scripts to extract the Quantity, Unit, Name, and Comments from unstructured ingredient phrases.
We use it on Cooking to format incoming recipes. Given the following input:
```
1 pound carrots, young ones if possible
Kosher salt, to taste
2 tablespoons sherry vinegar
2 tablespoons honey
2 tablespoons extra-virgin olive oil
1 medium-size shallot, peeled and finely diced
1/2 teaspoon fresh thyme leaves, finely chopped
Black pepper, to taste
```
"""
_URL = "https://github.com/nytimes/ingredient-phrase-tagger"
_URLS = {
"train": "https://huggingface.co/datasets/napsternxg/nyt_ingredients/resolve/main/nyt-ingredients.crf.jsonl"
}
import json
class NYTIngredientsConfig(datasets.BuilderConfig):
"""The NYT Ingredients Dataset."""
def __init__(self, **kwargs):
"""BuilderConfig for NYT Ingredients.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NYTIngredientsConfig, self).__init__(**kwargs)
class NYTIngredients(datasets.GeneratorBasedBuilder):
"""The NYT Ingredients Dataset."""
BUILDER_CONFIGS = [
NYTIngredientsConfig(
name="nyt_ingredients",
version=datasets.Version("1.0.0"),
description="The NYT Ingredients Dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"input": datasets.Value("string"),
"display_input": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"index": datasets.Sequence(datasets.Value("string")),
"lengthGroup": datasets.Sequence(datasets.Value("string")),
"isCapitalized": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"NoCAP",
"YesCAP"
]
)
),
"insideParenthesis": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"NoPAREN",
"YesPAREN",
]
)
),
"label": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-COMMENT",
"I-COMMENT",
"B-NAME",
"I-NAME",
"B-RANGE_END",
"I-RANGE_END",
"B-QTY",
"I-QTY",
"B-UNIT",
"I-UNIT",
]
)
),
}
),
supervised_keys=None,
homepage="https://github.com/nytimes/ingredient-phrase-tagger",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as fp:
for i, line in enumerate(fp):
yield i, json.loads(line)
|