Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
fbf2b05
·
1 Parent(s): c4b2c0b

Add bzd data files

Browse files
README.md CHANGED
@@ -90,13 +90,13 @@ dataset_info:
90
  '2': contradiction
91
  splits:
92
  - name: validation
93
- num_bytes: 143362
94
  num_examples: 743
95
  - name: test
96
- num_bytes: 127684
97
  num_examples: 750
98
- download_size: 2256093
99
- dataset_size: 271046
100
  - config_name: cni
101
  features:
102
  - name: premise
@@ -280,6 +280,12 @@ configs:
280
  path: aym/validation-*
281
  - split: test
282
  path: aym/test-*
 
 
 
 
 
 
283
  ---
284
 
285
  # Dataset Card for AmericasNLI
 
90
  '2': contradiction
91
  splits:
92
  - name: validation
93
+ num_bytes: 143354
94
  num_examples: 743
95
  - name: test
96
+ num_bytes: 127676
97
  num_examples: 750
98
+ download_size: 91039
99
+ dataset_size: 271030
100
  - config_name: cni
101
  features:
102
  - name: premise
 
280
  path: aym/validation-*
281
  - split: test
282
  path: aym/test-*
283
+ - config_name: bzd
284
+ data_files:
285
+ - split: validation
286
+ path: bzd/validation-*
287
+ - split: test
288
+ path: bzd/test-*
289
  ---
290
 
291
  # Dataset Card for AmericasNLI
bzd/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dddd941efee902888917a817b0b10175f94fbebbe8be3bf4748100b5b9191c3a
3
+ size 42857
bzd/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da1d32006763143587ae9696c9490da6c2878b8a517ace51556584c7328e92ee
3
+ size 48182
dataset_infos.json CHANGED
@@ -53,35 +53,28 @@
53
  "bzd": {
54
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
55
  "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
56
- "homepage": "TODO",
57
  "license": "",
58
  "features": {
59
  "premise": {
60
  "dtype": "string",
61
- "id": null,
62
  "_type": "Value"
63
  },
64
  "hypothesis": {
65
  "dtype": "string",
66
- "id": null,
67
  "_type": "Value"
68
  },
69
  "label": {
70
- "num_classes": 3,
71
  "names": [
72
  "entailment",
73
  "neutral",
74
  "contradiction"
75
  ],
76
- "names_file": null,
77
- "id": null,
78
  "_type": "ClassLabel"
79
  }
80
  },
81
- "post_processed": null,
82
- "supervised_keys": null,
83
- "task_templates": null,
84
  "builder_name": "americas_nli",
 
85
  "config_name": "bzd",
86
  "version": {
87
  "version_str": "1.0.0",
@@ -93,31 +86,20 @@
93
  "splits": {
94
  "validation": {
95
  "name": "validation",
96
- "num_bytes": 143362,
97
  "num_examples": 743,
98
- "dataset_name": "americas_nli"
99
  },
100
  "test": {
101
  "name": "test",
102
- "num_bytes": 127684,
103
  "num_examples": 750,
104
- "dataset_name": "americas_nli"
105
- }
106
- },
107
- "download_checksums": {
108
- "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {
109
- "num_bytes": 1090405,
110
- "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"
111
- },
112
- "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {
113
- "num_bytes": 1165688,
114
- "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"
115
  }
116
  },
117
- "download_size": 2256093,
118
- "post_processing_size": null,
119
- "dataset_size": 271046,
120
- "size_in_bytes": 2527139
121
  },
122
  "cni": {
123
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
 
53
  "bzd": {
54
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",
55
  "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
56
+ "homepage": "https://github.com/nala-cub/AmericasNLI",
57
  "license": "",
58
  "features": {
59
  "premise": {
60
  "dtype": "string",
 
61
  "_type": "Value"
62
  },
63
  "hypothesis": {
64
  "dtype": "string",
 
65
  "_type": "Value"
66
  },
67
  "label": {
 
68
  "names": [
69
  "entailment",
70
  "neutral",
71
  "contradiction"
72
  ],
 
 
73
  "_type": "ClassLabel"
74
  }
75
  },
 
 
 
76
  "builder_name": "americas_nli",
77
+ "dataset_name": "americas_nli",
78
  "config_name": "bzd",
79
  "version": {
80
  "version_str": "1.0.0",
 
86
  "splits": {
87
  "validation": {
88
  "name": "validation",
89
+ "num_bytes": 143354,
90
  "num_examples": 743,
91
+ "dataset_name": null
92
  },
93
  "test": {
94
  "name": "test",
95
+ "num_bytes": 127676,
96
  "num_examples": 750,
97
+ "dataset_name": null
 
 
 
 
 
 
 
 
 
 
98
  }
99
  },
100
+ "download_size": 91039,
101
+ "dataset_size": 271030,
102
+ "size_in_bytes": 362069
 
103
  },
104
  "cni": {
105
  "description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n",