ACT-Thor / ACT-Thor.py
albertvillanova's picture
Remove deprecated tasks
d247581 verified
raw
history blame
4.98 kB
# Adapted from the dataset builders for the Winoground Dataset (https://huggingface.co/datasets/facebook/winoground)
import os
import ast
from pathlib import Path
import datasets
import json
import pandas as pd
# from huggingface_hub import hf_hub_url
_CITATION = """\
@inproceedings{hanna-etal-2022-act,
title = "ACT-Thor: A Controlled Benchmark for Embodied Action Understanding in Simulated Environments",
author = "Hanna, Michael and
Pedeni, Federico and
Suglia, Alessandro and
Testoni, Alberto and
Bernardi, Raffaella",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, South Korea",
publisher = "International Committee on Computational Linguistics",
}
"""
_URL = "https://huggingface.co/datasets/mwhanna/ACT-Thor"
_DESCRIPTION = """\
ACT-Thor is a dataset intended for evaluating models' understanding of actions.
"""
class ACTThorConfig(datasets.BuilderConfig):
"""BuilderConfig for ACT-Thor."""
def __init__(self, split_type, **kwargs):
"""BuilderConfig for ACT-Thor.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ACTThorConfig, self).__init__(**kwargs)
self.split_type = split_type
class ACTThor(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = ACTThorConfig
BUILDER_CONFIGS = [
ACTThorConfig('sample',
name="sample",
),
ACTThorConfig('object',
name="object",
),
ACTThorConfig('scene',
name="scene",
),
]
DEFAULT_CONFIG_NAME = "sample"
IMAGE_EXTENSION = ".png"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"before_image": datasets.Image(),
"after_image_0": datasets.Image(),
"after_image_1": datasets.Image(),
"after_image_2": datasets.Image(),
"after_image_3": datasets.Image(),
"action": datasets.Value("string"),
"action_id": datasets.Value("int32"),
"label": datasets.Value("int32"),
"object": datasets.Value("string"),
"scene": datasets.Value("string"),
}
),
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# hf_auth_token = dl_manager.download_config.use_auth_token
# if hf_auth_token is None:
# raise ConnectionError(
# "Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset"
# )
downloaded_files = dl_manager.download_and_extract({
"examples_csv": 'https://www.dropbox.com/s/4xdlimis1lv17x4/dataset_hf.csv?dl=1', # hf_hub_url("datasets/facebook/winoground", filename="data/examples.jsonl"),
"images_dir": 'https://www.dropbox.com/s/odkkrtvogi8go76/images.zip?dl=1', # hf_hub_url("datasets/facebook/winoground", filename="data/images.zip")
})
split_type = self.config.split_type
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'split_type': split_type, 'split':'train', **downloaded_files}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'split_type': split_type, 'split':'valid', **downloaded_files}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'split_type': split_type, 'split':'test', **downloaded_files})]
def _generate_examples(self, examples_csv, images_dir, split_type, split):
"""Yields examples."""
#print('The examples csv is stored in ')
#print(examples_csv)
df = pd.read_csv(examples_csv)
df = df[df[f'{split_type}_split'] == split]
df = df.drop(['sample_split', 'object_split', 'scene_split'], axis='columns')
for example in df.to_dict('records'):
order = ast.literal_eval(example['order'])
example["before_image"] = os.path.join(images_dir, "before_images", Path(example["before_image"]).name)
example["after_image_0"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[0]}"]).name)
example["after_image_1"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[1]}"]).name)
example["after_image_2"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[2]}"]).name)
example["after_image_3"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[3]}"]).name)
id_ = example["id"]
del example['order']
yield id_, example