|
|
|
import os |
|
import ast |
|
from pathlib import Path |
|
|
|
import datasets |
|
import json |
|
import pandas as pd |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{hanna-etal-2022-act, |
|
title = "ACT-Thor: A Controlled Benchmark for Embodied Action Understanding in Simulated Environments", |
|
author = "Hanna, Michael and |
|
Pedeni, Federico and |
|
Suglia, Alessandro and |
|
Testoni, Alberto and |
|
Bernardi, Raffaella", |
|
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", |
|
month = oct, |
|
year = "2022", |
|
address = "Gyeongju, South Korea", |
|
publisher = "International Committee on Computational Linguistics", |
|
} |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/mwhanna/ACT-Thor" |
|
|
|
_DESCRIPTION = """\ |
|
ACT-Thor is a dataset intended for evaluating models' understanding of actions. |
|
""" |
|
|
|
|
|
class ACTThorConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ACT-Thor.""" |
|
|
|
def __init__(self, split_type, **kwargs): |
|
"""BuilderConfig for ACT-Thor. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ACTThorConfig, self).__init__(**kwargs) |
|
self.split_type = split_type |
|
|
|
|
|
|
|
class ACTThor(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIG_CLASS = ACTThorConfig |
|
|
|
BUILDER_CONFIGS = [ |
|
ACTThorConfig('sample', |
|
name="sample", |
|
), |
|
ACTThorConfig('object', |
|
name="object", |
|
), |
|
ACTThorConfig('scene', |
|
name="scene", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "sample" |
|
|
|
IMAGE_EXTENSION = ".png" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"before_image": datasets.Image(), |
|
"after_image_0": datasets.Image(), |
|
"after_image_1": datasets.Image(), |
|
"after_image_2": datasets.Image(), |
|
"after_image_3": datasets.Image(), |
|
"action": datasets.Value("string"), |
|
"action_id": datasets.Value("int32"), |
|
"label": datasets.Value("int32"), |
|
"object": datasets.Value("string"), |
|
"scene": datasets.Value("string"), |
|
} |
|
), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
downloaded_files = dl_manager.download_and_extract({ |
|
"examples_csv": 'https://www.dropbox.com/s/4xdlimis1lv17x4/dataset_hf.csv?dl=1', |
|
"images_dir": 'https://www.dropbox.com/s/odkkrtvogi8go76/images.zip?dl=1', |
|
}) |
|
|
|
split_type = self.config.split_type |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'split_type': split_type, 'split':'train', **downloaded_files}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'split_type': split_type, 'split':'valid', **downloaded_files}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'split_type': split_type, 'split':'test', **downloaded_files})] |
|
|
|
def _generate_examples(self, examples_csv, images_dir, split_type, split): |
|
"""Yields examples.""" |
|
|
|
|
|
df = pd.read_csv(examples_csv) |
|
df = df[df[f'{split_type}_split'] == split] |
|
df = df.drop(['sample_split', 'object_split', 'scene_split'], axis='columns') |
|
for example in df.to_dict('records'): |
|
order = ast.literal_eval(example['order']) |
|
example["before_image"] = os.path.join(images_dir, "before_images", Path(example["before_image"]).name) |
|
example["after_image_0"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[0]}"]).name) |
|
example["after_image_1"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[1]}"]).name) |
|
example["after_image_2"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[2]}"]).name) |
|
example["after_image_3"] = os.path.join(images_dir, "after_images", Path(example[f"after_image_{order[3]}"]).name) |
|
id_ = example["id"] |
|
del example['order'] |
|
yield id_, example |