|
import sys |
|
import subprocess |
|
from safetensors.torch import load_file |
|
from diffusers import AutoPipelineForText2Image |
|
from datasets import load_dataset |
|
from huggingface_hub.repocard import RepoCard |
|
import torch |
|
import re |
|
import argparse |
|
|
|
def parse_arguments(): |
|
parser = argparse.ArgumentParser(description="Process script arguments.") |
|
parser.add_argument('--dataset_name', required=True, help='Name of the dataset.') |
|
parser.add_argument('--output_dir', required=True, help='Output directory.') |
|
parser.add_argument('--num_new_tokens_per_abstraction', type=int, default=0, help='Number of new tokens per abstraction.') |
|
parser.add_argument('--train_text_encoder_ti', action='store_true', help='Flag to train text encoder TI.') |
|
|
|
return parser.parse_args() |
|
|
|
def do_train(script_args): |
|
|
|
print("Starting training...") |
|
subprocess.run(['python', 'trainer.py'] + script_args) |
|
|
|
def do_inference(dataset_name, output_dir, num_tokens): |
|
try: |
|
print("Starting inference to generate example images...") |
|
dataset = load_dataset(dataset_name) |
|
pipe = AutoPipelineForText2Image.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to("cuda") |
|
pipe.load_lora_weights(f'{output_dir}/pytorch_lora_weights.safetensors') |
|
|
|
prompts = dataset["train"]["prompt"] |
|
widget_content = [] |
|
if(num_tokens > 0): |
|
tokens_sequence = ''.join(f'<s{i}>' for i in range(num_tokens)) |
|
tokens_list = [f'<s{i}>' for i in range(num_tokens)] |
|
|
|
state_dict = load_file(f"{output_dir}/embeddings.safetensors") |
|
pipe.load_textual_inversion(state_dict["clip_l"], token=tokens_list, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) |
|
pipe.load_textual_inversion(state_dict["clip_g"], token=tokens_list, text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) |
|
|
|
prompts = [prompt.replace("TOK", tokens_sequence) for prompt in prompts] |
|
|
|
for i, prompt in enumerate(prompts): |
|
image = pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0] |
|
filename = f"image-{i}.png" |
|
image.save(f"{output_dir}/{filename}") |
|
card_dict = { |
|
"text": prompt, |
|
"output": { |
|
"url": filename |
|
} |
|
} |
|
widget_content.append(card_dict) |
|
|
|
repo_id = api.create_repo(f"{username}/{output_dir}", exist_ok=True).repo_id |
|
|
|
with open(f'{output_dir}/README.md', 'r') as file: |
|
readme_content = file.read() |
|
readme_content = readme_content.replace(f'{output_dir}', f'{username}/{output_dir}') |
|
|
|
card = RepoCard(readme_content) |
|
card.data["widget"] = widget_content |
|
card.save(f'{output_dir}/README.md') |
|
except Exception as e: |
|
print("Something went wrong with generating images, specifically: ", e) |
|
|
|
from huggingface_hub import HfApi |
|
api = HfApi() |
|
username = api.whoami()["name"] |
|
print("Starting upload...") |
|
api.upload_folder( |
|
folder_path=output_dir, |
|
repo_id=f"{username}/{output_dir}", |
|
repo_type="model", |
|
) |
|
print("Upload finished!") |
|
|
|
import sys |
|
import argparse |
|
|
|
def main(): |
|
|
|
script_args = sys.argv[1:] |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--dataset_name', required=True) |
|
parser.add_argument('--output_dir', required=True) |
|
parser.add_argument('--num_new_tokens_per_abstraction', type=int, default=0) |
|
parser.add_argument('--train_text_encoder_ti', action='store_true') |
|
|
|
|
|
args, _ = parser.parse_known_args(script_args) |
|
|
|
|
|
if not args.train_text_encoder_ti: |
|
args.num_new_tokens_per_abstraction = 0 |
|
|
|
|
|
do_train(script_args) |
|
print("Training finished!") |
|
do_inference(args.dataset_name, args.output_dir, args.num_new_tokens_per_abstraction) |
|
print("All finished!") |
|
|
|
if __name__ == "__main__": |
|
main() |