|
from __future__ import annotations |
|
|
|
import json |
|
import logging |
|
import math |
|
import re |
|
from pathlib import Path |
|
from typing import Any |
|
|
|
from huggingface_hub import HfApi, get_hf_file_metadata, hf_hub_download, hf_hub_url |
|
from huggingface_hub.errors import NotASafetensorsRepoError |
|
from huggingface_hub.hf_api import ModelInfo |
|
from huggingface_hub.repocard import metadata_load |
|
from mteb import ModelMeta, get_task |
|
|
|
API = HfApi() |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
library_mapping = { |
|
"sentence-transformers": "Sentence Transformers", |
|
} |
|
|
|
|
|
def get_model_dir(model_id: str) -> Path: |
|
external_result_dir = Path("results") / model_id.replace("/", "__") / "external" |
|
return external_result_dir |
|
|
|
|
|
renamed_tasks = { |
|
"NorwegianParliament": "NorwegianParliamentClassification", |
|
"CMedQAv2": "CMedQAv2-reranking", |
|
"CMedQAv1": "CMedQAv1-reranking", |
|
"8TagsClustering": "EightTagsClustering", |
|
"PPC": "PpcPC", |
|
"PawsX": "PawsXParaphraseIdentification", |
|
} |
|
|
|
|
|
def simplify_dataset_name(name: str) -> str: |
|
task_name = name.replace("MTEB ", "").split()[0] |
|
return renamed_tasks.get(task_name, task_name) |
|
|
|
|
|
def get_model_parameters_memory(model_info: ModelInfo) -> tuple[int| None, float|None]: |
|
try: |
|
safetensors = API.get_safetensors_metadata(model_info.id) |
|
num_parameters = sum(safetensors.parameter_count.values()) |
|
return num_parameters, round(num_parameters * 4 / 1024 ** 3, 2) |
|
except NotASafetensorsRepoError as e: |
|
logger.info(f"Could not find SafeTensors metadata for {model_info.id}") |
|
|
|
filenames = [sib.rfilename for sib in model_info.siblings] |
|
if "pytorch_model.bin" in filenames: |
|
url = hf_hub_url(model_info.id, filename="pytorch_model.bin") |
|
meta = get_hf_file_metadata(url) |
|
bytes_per_param = 4 |
|
num_params = round(meta.size / bytes_per_param) |
|
size_gb = round(meta.size * (4 / bytes_per_param) / 1024 ** 3, 2) |
|
return num_params, size_gb |
|
if "pytorch_model.bin.index.json" in filenames: |
|
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json") |
|
size = json.load(open(index_path)) |
|
bytes_per_param = 4 |
|
if "metadata" in size and "total_size" in size["metadata"]: |
|
return round(size["metadata"]["total_size"] / bytes_per_param), round(size["metadata"]["total_size"] / 1024 ** 3, 2) |
|
logger.info(f"Could not find the model parameters for {model_info.id}") |
|
return None, None |
|
|
|
|
|
def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, float]: |
|
siblings = model.siblings or [] |
|
filenames = [sib.rfilename for sib in siblings] |
|
dim, seq = None, None |
|
for filename in filenames: |
|
if re.match(r"\d+_Pooling/config.json", filename): |
|
st_config_path = hf_hub_download(model.id, filename=filename) |
|
dim = json.load(open(st_config_path)).get("word_embedding_dimension", None) |
|
break |
|
for filename in filenames: |
|
if re.match(r"\d+_Dense/config.json", filename): |
|
st_config_path = hf_hub_download(model.id, filename=filename) |
|
dim = json.load(open(st_config_path)).get("out_features", dim) |
|
if "config.json" in filenames: |
|
config_path = hf_hub_download(model.id, filename="config.json") |
|
config = json.load(open(config_path)) |
|
if not dim: |
|
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", None))) |
|
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", None)))) |
|
|
|
parameters, memory = get_model_parameters_memory(model) |
|
return dim, seq, parameters, memory |
|
|
|
|
|
def create_model_meta(model_info: ModelInfo) -> ModelMeta | None: |
|
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30) |
|
meta = metadata_load(readme_path) |
|
dim, seq, parameters, memory = None, None, None, None |
|
try: |
|
dim, seq, parameters, memory = get_dim_seq_size(model_info) |
|
except Exception as e: |
|
logger.error(f"Error getting model parameters for {model_info.id}, {e}") |
|
|
|
release_date = str(model_info.created_at.date()) if model_info.created_at else "" |
|
library = [library_mapping[model_info.library_name]] if model_info.library_name in library_mapping else [] |
|
languages = meta.get("language", []) |
|
if not isinstance(languages, list) and isinstance(languages, str): |
|
languages = [languages] |
|
|
|
for i in range(len(languages)): |
|
if languages[i] is False: |
|
languages[i] = "no" |
|
|
|
model_meta = ModelMeta( |
|
name=model_info.id, |
|
revision=model_info.sha, |
|
release_date=release_date, |
|
open_weights=True, |
|
framework=library, |
|
license=meta.get("license", None), |
|
embed_dim=dim, |
|
max_tokens=seq, |
|
n_parameters=parameters, |
|
languages=languages, |
|
) |
|
return model_meta |
|
|
|
|
|
def parse_readme(model_info: ModelInfo) -> dict[str, dict[str, Any]] | None: |
|
model_id = model_info.id |
|
try: |
|
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30) |
|
except Exception: |
|
logger.warning(f"ERROR: Could not fetch metadata for {model_id}, trying again") |
|
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=30) |
|
meta = metadata_load(readme_path) |
|
if "model-index" not in meta: |
|
logger.info(f"Could not find model-index in {model_id}") |
|
return |
|
model_index = meta["model-index"][0] |
|
model_name_from_readme = model_index.get("name", None) |
|
orgs = ["Alibaba-NLP", "HIT-TMG", "McGill-NLP", "Snowflake", "facebook", "jinaai", "nomic-ai"] |
|
is_org = any([model_id.startswith(org) for org in orgs]) |
|
|
|
|
|
|
|
if model_name_from_readme and not model_info.id.endswith(model_name_from_readme) and not is_org: |
|
logger.warning(f"Model name mismatch: {model_info.id} vs {model_name_from_readme}") |
|
return |
|
results = model_index.get("results", []) |
|
model_results = {} |
|
for result in results: |
|
dataset = result["dataset"] |
|
dataset_type = simplify_dataset_name(dataset["name"]) |
|
|
|
if dataset_type not in model_results: |
|
output_dict = { |
|
"dataset_revision": dataset.get("revision", ""), |
|
"task_name": simplify_dataset_name(dataset["name"]), |
|
"evaluation_time": None, |
|
"mteb_version": None, |
|
"scores": {}, |
|
} |
|
else: |
|
output_dict = model_results[dataset_type] |
|
|
|
try: |
|
mteb_task = get_task(output_dict["task_name"]) |
|
except Exception: |
|
logger.warning(f"Error getting task for {model_id} {output_dict['task_name']}") |
|
continue |
|
|
|
mteb_task_metadata = mteb_task.metadata |
|
mteb_task_eval_languages = mteb_task_metadata.eval_langs |
|
|
|
scores_dict = output_dict["scores"] |
|
current_split = dataset["split"] |
|
current_config = dataset.get("config", "") |
|
cur_split_metrics = { |
|
"hf_subset": current_config, |
|
"languages": mteb_task_eval_languages if isinstance(mteb_task_eval_languages, list) else mteb_task_eval_languages.get(current_config, ["None"]), |
|
} |
|
for metric in result["metrics"]: |
|
if isinstance(metric["value"], (float, int)): |
|
cur_split_metrics[metric["type"]] = metric["value"] / 100 |
|
else: |
|
cur_split_metrics[metric["type"]] = metric["value"] |
|
|
|
main_score_str = "main_score" |
|
if main_score_str not in cur_split_metrics: |
|
|
|
for old_metric, new_metric in zip(["cos_sim_pearson", "cos_sim_spearman"], ["cosine_pearson", "cosine_spearman"]): |
|
if old_metric in cur_split_metrics: |
|
cur_split_metrics[new_metric] = cur_split_metrics[old_metric] |
|
|
|
if mteb_task.metadata.main_score not in cur_split_metrics: |
|
logger.warning(f"Could not find main score for {model_id} {output_dict['task_name']}, mteb task {mteb_task.metadata.name}. Main score: {mteb_task.metadata.main_score}. Metrics: {cur_split_metrics}, result {result['metrics']}") |
|
continue |
|
|
|
cur_split_metrics[main_score_str] = cur_split_metrics.get(mteb_task.metadata.main_score, None) |
|
split_metrics = scores_dict.get(current_split, []) |
|
split_metrics.append(cur_split_metrics) |
|
scores_dict[current_split] = split_metrics |
|
model_results[dataset_type] = output_dict |
|
return model_results |
|
|
|
|
|
def get_mteb_data() -> None: |
|
models = sorted(list(API.list_models(filter="mteb", full=True)), key=lambda x: x.id) |
|
|
|
for i, model_info in enumerate(models, start=1): |
|
logger.info(f"[{i}/{len(models)}] Processing {model_info.id}") |
|
model_path = get_model_dir(model_info.id) |
|
if (model_path / "model_meta.json").exists() and len(list(model_path.glob("*.json"))) > 1: |
|
logger.info(f"Model meta already exists for {model_info.id}") |
|
|
|
if model_info.id.lower().endswith("gguf"): |
|
logger.info(f"Skipping {model_info.id} GGUF model") |
|
continue |
|
|
|
spam_users = ["ILKT", "fine-tuned", "mlx-community"] |
|
is_spam = False |
|
for spam_user in spam_users: |
|
if model_info.id.startswith(spam_user): |
|
logger.info(f"Skipping {model_info.id}") |
|
is_spam = True |
|
continue |
|
if is_spam: |
|
continue |
|
model_meta = create_model_meta(model_info) |
|
model_results = parse_readme(model_info) |
|
|
|
if not model_meta or not model_results: |
|
logger.warning(f"Could not get model meta or results for {model_info.id}") |
|
continue |
|
|
|
if not model_path.exists(): |
|
model_path.mkdir(parents=True, exist_ok=True) |
|
|
|
model_meta_path = model_path / "model_meta.json" |
|
with model_meta_path.open("w") as f: |
|
json.dump(model_meta.model_dump(), f, indent=4) |
|
|
|
for model_result in model_results: |
|
task_name = model_results[model_result]["task_name"] |
|
result_file = model_path / f"{task_name}.json" |
|
with result_file.open("w") as f: |
|
json.dump(model_results[model_result], f, indent=4) |
|
|
|
|
|
if __name__ == "__main__": |
|
logging.basicConfig(level=logging.INFO) |
|
get_mteb_data() |
|
|