File size: 10,887 Bytes
29546d7 2b0b404 29546d7 2b0b404 29546d7 2b0b404 29546d7 6dc609b 29546d7 2b0b404 29546d7 6dc609b 29546d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
from __future__ import annotations
import json
import logging
import math
import re
from pathlib import Path
from typing import Any
from huggingface_hub import HfApi, get_hf_file_metadata, hf_hub_download, hf_hub_url
from huggingface_hub.errors import NotASafetensorsRepoError
from huggingface_hub.hf_api import ModelInfo
from huggingface_hub.repocard import metadata_load
from mteb import ModelMeta, get_task
API = HfApi()
logger = logging.getLogger(__name__)
library_mapping = {
"sentence-transformers": "Sentence Transformers",
}
def get_model_dir(model_id: str) -> Path:
external_result_dir = Path("results") / model_id.replace("/", "__") / "external"
return external_result_dir
renamed_tasks = {
"NorwegianParliament": "NorwegianParliamentClassification",
"CMedQAv2": "CMedQAv2-reranking",
"CMedQAv1": "CMedQAv1-reranking",
"8TagsClustering": "EightTagsClustering",
"PPC": "PpcPC",
"PawsX": "PawsXParaphraseIdentification",
}
def simplify_dataset_name(name: str) -> str:
task_name = name.replace("MTEB ", "").split()[0]
return renamed_tasks.get(task_name, task_name)
def get_model_parameters_memory(model_info: ModelInfo) -> tuple[int| None, float|None]:
try:
safetensors = API.get_safetensors_metadata(model_info.id)
num_parameters = sum(safetensors.parameter_count.values())
return num_parameters, round(num_parameters * 4 / 1024 ** 3, 2)
except NotASafetensorsRepoError as e:
logger.info(f"Could not find SafeTensors metadata for {model_info.id}")
filenames = [sib.rfilename for sib in model_info.siblings]
if "pytorch_model.bin" in filenames:
url = hf_hub_url(model_info.id, filename="pytorch_model.bin")
meta = get_hf_file_metadata(url)
bytes_per_param = 4
num_params = round(meta.size / bytes_per_param)
size_gb = round(meta.size * (4 / bytes_per_param) / 1024 ** 3, 2)
return num_params, size_gb
if "pytorch_model.bin.index.json" in filenames:
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json")
size = json.load(open(index_path))
bytes_per_param = 4
if "metadata" in size and "total_size" in size["metadata"]:
return round(size["metadata"]["total_size"] / bytes_per_param), round(size["metadata"]["total_size"] / 1024 ** 3, 2)
logger.info(f"Could not find the model parameters for {model_info.id}")
return None, None
def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, float]:
siblings = model.siblings or []
filenames = [sib.rfilename for sib in siblings]
dim, seq = None, None
for filename in filenames:
if re.match(r"\d+_Pooling/config.json", filename):
st_config_path = hf_hub_download(model.id, filename=filename)
dim = json.load(open(st_config_path)).get("word_embedding_dimension", None)
break
for filename in filenames:
if re.match(r"\d+_Dense/config.json", filename):
st_config_path = hf_hub_download(model.id, filename=filename)
dim = json.load(open(st_config_path)).get("out_features", dim)
if "config.json" in filenames:
config_path = hf_hub_download(model.id, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", None)))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", None))))
parameters, memory = get_model_parameters_memory(model)
return dim, seq, parameters, memory
def create_model_meta(model_info: ModelInfo) -> ModelMeta | None:
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30)
meta = metadata_load(readme_path)
dim, seq, parameters, memory = None, None, None, None
try:
dim, seq, parameters, memory = get_dim_seq_size(model_info)
except Exception as e:
logger.error(f"Error getting model parameters for {model_info.id}, {e}")
release_date = str(model_info.created_at.date()) if model_info.created_at else ""
library = [library_mapping[model_info.library_name]] if model_info.library_name in library_mapping else []
languages = meta.get("language", [])
if not isinstance(languages, list) and isinstance(languages, str):
languages = [languages]
# yaml transforms norwegian `no` to False
for i in range(len(languages)):
if languages[i] is False:
languages[i] = "no"
model_meta = ModelMeta(
name=model_info.id,
revision=model_info.sha,
release_date=release_date,
open_weights=True,
framework=library,
license=meta.get("license", None),
embed_dim=dim,
max_tokens=seq,
n_parameters=parameters,
languages=languages,
)
return model_meta
def parse_readme(model_info: ModelInfo) -> dict[str, dict[str, Any]] | None:
model_id = model_info.id
try:
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30)
except Exception:
logger.warning(f"ERROR: Could not fetch metadata for {model_id}, trying again")
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=30)
meta = metadata_load(readme_path)
if "model-index" not in meta:
logger.info(f"Could not find model-index in {model_id}")
return
model_index = meta["model-index"][0]
model_name_from_readme = model_index.get("name", None)
orgs = ["Alibaba-NLP", "HIT-TMG", "McGill-NLP", "Snowflake", "facebook", "jinaai", "nomic-ai"]
is_org = any([model_id.startswith(org) for org in orgs])
# There a lot of reuploads with tunes, quantization, etc. We only want the original model
# to prevent this most of the time we can check if the model name from the readme is the same as the model id
# but some orgs have a different naming in their readme
if model_name_from_readme and not model_info.id.endswith(model_name_from_readme) and not is_org:
logger.warning(f"Model name mismatch: {model_info.id} vs {model_name_from_readme}")
return
results = model_index.get("results", [])
model_results = {}
for result in results:
dataset = result["dataset"]
dataset_type = simplify_dataset_name(dataset["name"])
if dataset_type not in model_results:
output_dict = {
"dataset_revision": dataset.get("revision", ""),
"task_name": simplify_dataset_name(dataset["name"]),
"evaluation_time": None,
"mteb_version": None,
"scores": {},
}
else:
output_dict = model_results[dataset_type]
try:
mteb_task = get_task(output_dict["task_name"])
except Exception:
logger.warning(f"Error getting task for {model_id} {output_dict['task_name']}")
continue
mteb_task_metadata = mteb_task.metadata
mteb_task_eval_languages = mteb_task_metadata.eval_langs
scores_dict = output_dict["scores"]
current_split = dataset["split"]
current_config = dataset.get("config", "")
cur_split_metrics = {
"hf_subset": current_config,
"languages": mteb_task_eval_languages if isinstance(mteb_task_eval_languages, list) else mteb_task_eval_languages.get(current_config, ["None"]),
}
for metric in result["metrics"]:
if isinstance(metric["value"], (float, int)):
cur_split_metrics[metric["type"]] = metric["value"] / 100
else:
cur_split_metrics[metric["type"]] = metric["value"]
main_score_str = "main_score"
if main_score_str not in cur_split_metrics:
# old sts and sum_eval have cos_sim_pearson, but in model_meta cosine_spearman is main_score
for old_metric, new_metric in zip(["cos_sim_pearson", "cos_sim_spearman"], ["cosine_pearson", "cosine_spearman"]):
if old_metric in cur_split_metrics:
cur_split_metrics[new_metric] = cur_split_metrics[old_metric]
if mteb_task.metadata.main_score not in cur_split_metrics:
logger.warning(f"Could not find main score for {model_id} {output_dict['task_name']}, mteb task {mteb_task.metadata.name}. Main score: {mteb_task.metadata.main_score}. Metrics: {cur_split_metrics}, result {result['metrics']}")
continue
cur_split_metrics[main_score_str] = cur_split_metrics.get(mteb_task.metadata.main_score, None)
split_metrics = scores_dict.get(current_split, [])
split_metrics.append(cur_split_metrics)
scores_dict[current_split] = split_metrics
model_results[dataset_type] = output_dict
return model_results
def get_mteb_data() -> None:
models = sorted(list(API.list_models(filter="mteb", full=True)), key=lambda x: x.id)
# models = [model for model in models if model.id == "ai-forever/ru-en-RoSBERTa"]
for i, model_info in enumerate(models, start=1):
logger.info(f"[{i}/{len(models)}] Processing {model_info.id}")
model_path = get_model_dir(model_info.id)
if (model_path / "model_meta.json").exists() and len(list(model_path.glob("*.json"))) > 1:
logger.info(f"Model meta already exists for {model_info.id}")
# continue
if model_info.id.lower().endswith("gguf"):
logger.info(f"Skipping {model_info.id} GGUF model")
continue
spam_users = ["ILKT", "fine-tuned", "mlx-community"]
is_spam = False
for spam_user in spam_users:
if model_info.id.startswith(spam_user):
logger.info(f"Skipping {model_info.id}")
is_spam = True
continue
if is_spam:
continue
model_meta = create_model_meta(model_info)
model_results = parse_readme(model_info)
if not model_meta or not model_results:
logger.warning(f"Could not get model meta or results for {model_info.id}")
continue
if not model_path.exists():
model_path.mkdir(parents=True, exist_ok=True)
model_meta_path = model_path / "model_meta.json"
with model_meta_path.open("w") as f:
json.dump(model_meta.model_dump(), f, indent=4)
for model_result in model_results:
task_name = model_results[model_result]["task_name"]
result_file = model_path / f"{task_name}.json"
with result_file.open("w") as f:
json.dump(model_results[model_result], f, indent=4)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
get_mteb_data()
|