File size: 3,338 Bytes
c5979f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""Wine Dataset"""

from typing import List

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
    "fixed_acidity",
    "volatile_acidity",
    "citric_acid",
    "residual_sugar",
    "chlorides",
    "free_sulfur_dioxide",
    "total_sulfur_dioxide",
    "density",
    "pH",
    "sulphates",
    "alcohol",
    "quality",
    "color"
]


DESCRIPTION = "Wine quality dataset."
_HOMEPAGE = "https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data"
_URLS = ("https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/wine/raw/main/Wine_Quality_Data.csv",
}
features_types_per_config = {
    "wine": {
        "fixed_acidity": datasets.Value("float64"),
        "volatile_acidity": datasets.Value("float64"),
        "citric_acid": datasets.Value("float64"),
        "residual_sugar": datasets.Value("float64"),
        "chlorides": datasets.Value("float64"),
        "free_sulfur_dioxide": datasets.Value("float64"),
        "total_sulfur_dioxide": datasets.Value("float64"),
        "density": datasets.Value("float64"),
        "pH": datasets.Value("float64"),
        "sulphates": datasets.Value("float64"),
        "alcohol": datasets.Value("float64"),
        "quality": datasets.Value("int8"),
        "color": datasets.ClassLabel(num_classes=2, names=("red", "white"))
    }
    
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class WineConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(WineConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Wine(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "wine"
    BUILDER_CONFIGS = [
        WineConfig(name="wine",
                   description="Binary classification."),
    ]


    def _info(self):
        if self.config.name not in features_per_config:
            raise ValueError(f"Unknown configuration: {self.config.name}")
        
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath)
        data = self.preprocess(data, config=self.config.name)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = "wine") -> pandas.DataFrame:
        data.loc[data.color == "red", "color"] = 0
        data.loc[data.color == "white", "color"] = 1
         
        data.columns = _BASE_FEATURE_NAMES
        
        if config == "wine":
            return data
        else:
            raise ValueError(f"Unknown config: {config}")