mstz commited on
Commit
a2fabf5
1 Parent(s): b0e9955

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +41 -1
  2. soybean.data +0 -0
  3. soybean.py +180 -0
README.md CHANGED
@@ -1,3 +1,43 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - soybean
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ - UCI
10
+ pretty_name: Isoybean
11
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
12
+ - tabular-classification
13
+ configs:
14
+ - soybean
15
  ---
16
+ # Soybean
17
+ The [Soybean dataset](https://archive-beta.ics.uci.edu/dataset/90/soybean+large) from the [UCI repository](https://archive-beta.ics.uci.edu/).
18
+ Classify the type of soybean.
19
+
20
+
21
+ # Configurations and tasks
22
+ | **Configuration** | **Task** | **Description** |
23
+ |-----------------------|---------------------------|-----------------|
24
+ | soybean | Binary classification.| Classify soybean type. |
25
+ | diaporthe_stem_canker | Binary classification | Is this instance of class diaporthe_stem_canker? |
26
+ | charcoal_rot | Binary classification | Is this instance of class charcoal_rot? |
27
+ | rhizoctonia_root_rot | Binary classification | Is this instance of class rhizoctonia_root_rot? |
28
+ | phytophthora_rot | Binary classification | Is this instance of class phytophthora_rot? |
29
+ | brown_stem_rot | Binary classification | Is this instance of class brown_stem_rot? |
30
+ | powdery_mildew | Binary classification | Is this instance of class powdery_mildew? |
31
+ | downy_mildew | Binary classification | Is this instance of class downy_mildew? |
32
+ | brown_spot | Binary classification | Is this instance of class brown_spot? |
33
+ | bacterial_blight | Binary classification | Is this instance of class bacterial_blight? |
34
+ | bacterial_pustule | Binary classification | Is this instance of class bacterial_pustule? |
35
+ | purple_seed_stain | Binary classification | Is this instance of class purple_seed_stain? |
36
+ | anthracnose | Binary classification | Is this instance of class anthracnose? |
37
+ | phyllosticta_leaf_spot | Binary classification | Is this instance of class phyllosticta_leaf_spot? |
38
+ | alternarialeaf_spot | Binary classification | Is this instance of class alternarialeaf_spot? |
39
+ | frog_eye_leaf_spot | Binary classification | Is this instance of class frog_eye_leaf_spot? |
40
+ | diaporthe_pod_&_stem_blight | Binary classification | Is this instance of class diaporthe_pod_? |
41
+ | cyst_nematode | Binary classification | Is this instance of class cyst_nematode? |
42
+ | 2_4_d_injury | Binary classification | Is this instance of class 2_4_d_injury? |
43
+ | herbicide_injury | Binary classification | Is this instance of class herbicide_injury? |
soybean.data ADDED
The diff for this file is too large to render. See raw diff
 
soybean.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Soybean Dataset"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ _ENCODING_DICS = {
14
+ "class": {
15
+ value: i for i, value in enumerate(["diaporthe_stem_canker",
16
+ "charcoal_rot", "rhizoctonia_root_rot",
17
+ "phytophthora_rot", "brown_stem_rot", "powdery_mildew",
18
+ "downy_mildew", "brown_spot", "bacterial_blight",
19
+ "bacterial_pustule", "purple_seed_stain", "anthracnose",
20
+ "phyllosticta_leaf_spot", "alternarialeaf_spot",
21
+ "frog_eye_leaf_spot", "diaporthe_pod_&_stem_blight",
22
+ "cyst_nematode", "2_4_d_injury", "herbicide_injury"])
23
+ }
24
+ }
25
+ _BASE_FEATURE_NAMES = [
26
+ "date",
27
+ "plant_stand",
28
+ "precip",
29
+ "temp",
30
+ "hail",
31
+ "crop_hist",
32
+ "area_damaged",
33
+ "severity",
34
+ "seed_tmt",
35
+ "germination",
36
+ "plant_growth",
37
+ "leaves",
38
+ "leafspots_halo",
39
+ "leafspots_marg",
40
+ "leafspot_size",
41
+ "leaf_shread",
42
+ "leaf_malf",
43
+ "leaf_mild",
44
+ "stem",
45
+ "lodging",
46
+ "stem_cankers",
47
+ "canker_lesion",
48
+ "fruiting_bodies",
49
+ "external decay",
50
+ "mycelium",
51
+ "int_discolor",
52
+ "sclerotia",
53
+ "fruit_pods",
54
+ "fruit spots",
55
+ "seed",
56
+ "mold_growth",
57
+ "seed_discolor",
58
+ "seed_size",
59
+ "shriveling",
60
+ "roots",
61
+ "class",
62
+ ]
63
+
64
+ DESCRIPTION = "Soybean dataset."
65
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990"
66
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990")
67
+ _CITATION = """
68
+ @misc{misc_us_census_data_(1990)_116,
69
+ author = {Meek,Meek, Thiesson,Thiesson & Heckerman,Heckerman},
70
+ title = {{US Census Data (1990)}},
71
+ howpublished = {UCI Machine Learning Repository},
72
+ note = {{DOI}: \\url{10.24432/C5VP42}}
73
+ }
74
+ """
75
+
76
+ # Dataset info
77
+ urls_per_split = {
78
+ "train": "https://huggingface.co/datasets/mstz/soybean/resolve/main/soybean.csv"
79
+ }
80
+ features_types_per_config = {
81
+ "soybean": {
82
+ "date": datasets.Value("string"),
83
+ "plant_stand": datasets.Value("string"),
84
+ "precip": datasets.Value("string"),
85
+ "temp": datasets.Value("string"),
86
+ "hail": datasets.Value("string"),
87
+ "crop_hist": datasets.Value("string"),
88
+ "area_damaged": datasets.Value("string"),
89
+ "severity": datasets.Value("string"),
90
+ "seed_tmt": datasets.Value("string"),
91
+ "germination": datasets.Value("string"),
92
+ "plant_growth": datasets.Value("string"),
93
+ "leaves": datasets.Value("string"),
94
+ "leafspots_halo": datasets.Value("string"),
95
+ "leafspots_marg": datasets.Value("string"),
96
+ "leafspot_size": datasets.Value("string"),
97
+ "leaf_shread": datasets.Value("string"),
98
+ "leaf_malf": datasets.Value("string"),
99
+ "leaf_mild": datasets.Value("string"),
100
+ "stem": datasets.Value("string"),
101
+ "lodging": datasets.Value("string"),
102
+ "stem_cankers": datasets.Value("string"),
103
+ "canker_lesion": datasets.Value("string"),
104
+ "fruiting_bodies": datasets.Value("string"),
105
+ "external decay": datasets.Value("string"),
106
+ "mycelium": datasets.Value("string"),
107
+ "int_discolor": datasets.Value("string"),
108
+ "sclerotia": datasets.Value("string"),
109
+ "fruit_pods": datasets.Value("string"),
110
+ "fruit spots": datasets.Value("string"),
111
+ "seed": datasets.Value("string"),
112
+ "mold_growth": datasets.Value("string"),
113
+ "seed_discolor": datasets.Value("string"),
114
+ "seed_size": datasets.Value("string"),
115
+ "shriveling": datasets.Value("string"),
116
+ "roots": datasets.Value("string"),
117
+ "class": datasets.ClassLabel(num_classes=19)
118
+ }
119
+ }
120
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
121
+
122
+
123
+ class SoybeanConfig(datasets.BuilderConfig):
124
+ def __init__(self, **kwargs):
125
+ super(SoybeanConfig, self).__init__(version=VERSION, **kwargs)
126
+ self.features = features_per_config[kwargs["name"]]
127
+
128
+
129
+ class Soybean(datasets.GeneratorBasedBuilder):
130
+ # dataset versions
131
+ DEFAULT_CONFIG = "soybean"
132
+ binary_configurations = [SoybeanConfig(name=c, description=f"Is this instance of class {c}?")
133
+ for c in _ENCODING_DICS["class"].keys()]
134
+ BUILDER_CONFIGS = [SoybeanConfig(name="soybean", description="Soybean for binary classification.")]
135
+ BUILDER_CONFIGS += binary_configurations
136
+
137
+
138
+ def _info(self):
139
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
140
+ features=features_per_config[self.config.name])
141
+
142
+ return info
143
+
144
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
145
+ downloads = dl_manager.download_and_extract(urls_per_split)
146
+
147
+ return [
148
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
149
+ ]
150
+
151
+ def _generate_examples(self, filepath: str):
152
+ data = pandas.read_csv(filepath, header=None)
153
+ data = self.preprocess(data)
154
+
155
+ for row_id, row in data.iterrows():
156
+ data_row = dict(row)
157
+
158
+ yield row_id, data_row
159
+
160
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
161
+ data.columns = _BASE_FEATURE_NAMES
162
+
163
+ for c in _ENCODING_DICS["class"].keys():
164
+ if self.config.name == c:
165
+ data["class"] = data["class"].apply(lambda x: 1 if x == c else 0)
166
+ break
167
+
168
+ for feature in _ENCODING_DICS:
169
+ encoding_function = partial(self.encode, feature)
170
+ data[feature] = data[feature].apply(encoding_function)
171
+
172
+ data = data.rename(columns={"instance migration_code_change_in_msa": "migration_code_change_in_msa"})
173
+
174
+
175
+ return data[list(features_types_per_config[self.config.name].keys())]
176
+
177
+ def encode(self, feature, value):
178
+ if feature in _ENCODING_DICS:
179
+ return _ENCODING_DICS[feature][value]
180
+ raise ValueError(f"Unknown feature: {feature}")