File size: 4,962 Bytes
33f25f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753b90
33f25f6
2753b90
33f25f6
2753b90
33f25f6
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""Seeds Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {}

DESCRIPTION = "Seeds dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
_CITATION = """
@misc{misc_seeds_236,
  author       = {Charytanowicz,Magorzata, Niewczas,Jerzy, Kulczycki,Piotr, Kowalski,Piotr & Lukasik,Szymon},
  title        = {{seeds}},
  year         = {2012},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5H30K}}
}
"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/seeds/raw/main/seeds.csv"
}
features_types_per_config = {
    "seeds": {
        "area": datasets.Value("float64"),
        "perimeter": datasets.Value("float64"),
        "compactness": datasets.Value("float64"),
        "length": datasets.Value("float64"),
        "width": datasets.Value("float64"),
        "asymmetry": datasets.Value("float64"),
        "length_grove": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=3),
    },
    "seeds_0": {
		"area": datasets.Value("float64"),
        "perimeter": datasets.Value("float64"),
        "compactness": datasets.Value("float64"),
        "length": datasets.Value("float64"),
        "width": datasets.Value("float64"),
        "asymmetry": datasets.Value("float64"),
        "length_grove": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "seeds_1": {
		"area": datasets.Value("float64"),
        "perimeter": datasets.Value("float64"),
        "compactness": datasets.Value("float64"),
        "length": datasets.Value("float64"),
        "width": datasets.Value("float64"),
        "asymmetry": datasets.Value("float64"),
        "length_grove": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "seeds_2": {
		"area": datasets.Value("float64"),
        "perimeter": datasets.Value("float64"),
        "compactness": datasets.Value("float64"),
        "length": datasets.Value("float64"),
        "width": datasets.Value("float64"),
        "asymmetry": datasets.Value("float64"),
        "length_grove": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class SeedsConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(SeedsConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Seeds(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "seeds"
    BUILDER_CONFIGS = [
        SeedsConfig(name="seeds", description="Seeds for multiclass classification."),
        SeedsConfig(name="seeds_0", description="Seeds for binary classification."),
        SeedsConfig(name="seeds_1", description="Seeds for binary classification."),
        SeedsConfig(name="seeds_2", description="Seeds for binary classification."),
        
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath)
        data = self.preprocess(data)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
        data["class"] = data["class"].apply(lambda x: x - 1)

        if self.config.name == "seeds_0":
            data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
        elif self.config.name == "seeds_1":
            data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
        elif self.config.name == "seeds_2":
            data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)
                
        return data[list(features_types_per_config[self.config.name].keys())]

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")