|
"""Pums Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
_ENCODING_DICS = { |
|
"class": { |
|
"- 50000.": 0, |
|
"50000+.": 1 |
|
} |
|
} |
|
_BASE_FEATURE_NAMES = [ |
|
"age", |
|
"class_of_worker", |
|
"detailed_industry_recode", |
|
"detailed_occupation_recode", |
|
"education", |
|
"wage_per_hour", |
|
"enroll_in_edu_inst_last_wk", |
|
"marital_stat", |
|
"major_industry_code", |
|
"major_occupation_code", |
|
"race", |
|
"hispanic_origin", |
|
"sex", |
|
"member_of_a_labor_union", |
|
"reason_for_unemployment", |
|
"full_or_part_time_employment_stat", |
|
"capital_gains", |
|
"capital_losses", |
|
"dividends_from_stocks", |
|
"tax_filer_stat", |
|
"region_of_previous_residence", |
|
"state_of_previous_residence", |
|
"detailed_household_and_family_stat", |
|
"detailed_household_summary_in_household", |
|
"migration_code_change_in_msa", |
|
"migration_code_change_in_reg", |
|
"migration_code_move_within_reg", |
|
"live_in_this_house_1_year_ago", |
|
"migration_prev_res_in_sunbelt", |
|
"num_persons_worked_for_employer", |
|
"family_members_under_18", |
|
"country_of_birth_father", |
|
"country_of_birth_mother", |
|
"country_of_birth_self", |
|
"citizenship", |
|
"own_business_or_self_employed", |
|
"fill_inc_questionnaire_for_veteran_admin", |
|
"veterans_benefits", |
|
"weeks_worked_in_year", |
|
"year", |
|
"class", |
|
] |
|
|
|
DESCRIPTION = "Pums dataset." |
|
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990" |
|
_URLS = ("https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990") |
|
_CITATION = """ |
|
@misc{misc_us_census_data_(1990)_116, |
|
author = {Meek,Meek, Thiesson,Thiesson & Heckerman,Heckerman}, |
|
title = {{US Census Data (1990)}}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5VP42}} |
|
} |
|
""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/pums/resolve/main/pums.csv" |
|
} |
|
features_types_per_config = { |
|
"pums": { |
|
"age": datasets.Value("int64"), |
|
"class_of_worker": datasets.Value("string"), |
|
"detailed_industry_recode": datasets.Value("string"), |
|
"detailed_occupation_recode": datasets.Value("string"), |
|
"education": datasets.Value("string"), |
|
"wage_per_hour": datasets.Value("int64"), |
|
"enroll_in_edu_inst_last_wk": datasets.Value("string"), |
|
"marital_stat": datasets.Value("string"), |
|
"major_industry_code": datasets.Value("string"), |
|
"major_occupation_code": datasets.Value("string"), |
|
"race": datasets.Value("string"), |
|
"hispanic_origin": datasets.Value("string"), |
|
"sex": datasets.Value("string"), |
|
"member_of_a_labor_union": datasets.Value("string"), |
|
"reason_for_unemployment": datasets.Value("string"), |
|
"full_or_part_time_employment_stat": datasets.Value("string"), |
|
"capital_gains": datasets.Value("int64"), |
|
"capital_losses": datasets.Value("int64"), |
|
"dividends_from_stocks": datasets.Value("int64"), |
|
"tax_filer_stat": datasets.Value("string"), |
|
"region_of_previous_residence": datasets.Value("string"), |
|
"state_of_previous_residence": datasets.Value("string"), |
|
"detailed_household_and_family_stat": datasets.Value("string"), |
|
"detailed_household_summary_in_household": datasets.Value("string"), |
|
"migration_code_change_in_msa": datasets.Value("string"), |
|
"migration_code_change_in_reg": datasets.Value("string"), |
|
"migration_code_move_within_reg": datasets.Value("string"), |
|
"live_in_this_house_1_year_ago": datasets.Value("string"), |
|
"migration_prev_res_in_sunbelt": datasets.Value("string"), |
|
"num_persons_worked_for_employer": datasets.Value("int64"), |
|
"family_members_under_18": datasets.Value("string"), |
|
"country_of_birth_father": datasets.Value("string"), |
|
"country_of_birth_mother": datasets.Value("string"), |
|
"country_of_birth_self": datasets.Value("string"), |
|
"citizenship": datasets.Value("string"), |
|
"own_business_or_self_employed": datasets.Value("int64"), |
|
"fill_inc_questionnaire_for_veteran_admin": datasets.Value("string"), |
|
"veterans_benefits": datasets.Value("int64"), |
|
"weeks_worked_in_year": datasets.Value("int64"), |
|
"year": datasets.Value("int64"), |
|
"class": datasets.ClassLabel(num_classes=2) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class PumsConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(PumsConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Pums(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "pums" |
|
BUILDER_CONFIGS = [PumsConfig(name="pums", description="Pums for binary classification.")] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
|
|
data = data.rename(columns={"instance migration_code_change_in_msa": "migration_code_change_in_msa"}) |
|
|
|
return data[list(features_types_per_config[self.config.name].keys())] |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|