|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
DESCRIPTION = "Pol dataset from the OpenML repository." |
|
_HOMEPAGE = "https://www.openml.org/search?type=data&sort=runs&id=722&status=active" |
|
_URLS = ("https://www.openml.org/search?type=data&sort=runs&id=722&status=active") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/pol/raw/main/pol.csv" |
|
} |
|
features_types_per_config = { |
|
"pol": { |
|
"f1": datasets.Value("int64"), |
|
"f2": datasets.Value("int64"), |
|
"f3": datasets.Value("int64"), |
|
"f4": datasets.Value("int64"), |
|
"f5": datasets.Value("int64"), |
|
"f6": datasets.Value("int64"), |
|
"f7": datasets.Value("int64"), |
|
"f8": datasets.Value("int64"), |
|
"f9": datasets.Value("int64"), |
|
"f10": datasets.Value("int64"), |
|
"f11": datasets.Value("int64"), |
|
"f12": datasets.Value("int64"), |
|
"f13": datasets.Value("int64"), |
|
"f14": datasets.Value("int64"), |
|
"f15": datasets.Value("int64"), |
|
"f16": datasets.Value("int64"), |
|
"f17": datasets.Value("int64"), |
|
"f18": datasets.Value("int64"), |
|
"f19": datasets.Value("int64"), |
|
"f20": datasets.Value("int64"), |
|
"f21": datasets.Value("int64"), |
|
"f22": datasets.Value("int64"), |
|
"f23": datasets.Value("int64"), |
|
"f24": datasets.Value("int64"), |
|
"f25": datasets.Value("int64"), |
|
"f26": datasets.Value("int64"), |
|
"f27": datasets.Value("int64"), |
|
"f28": datasets.Value("int64"), |
|
"f29": datasets.Value("int64"), |
|
"f30": datasets.Value("int64"), |
|
"f31": datasets.Value("int64"), |
|
"f32": datasets.Value("int64"), |
|
"f33": datasets.Value("int64"), |
|
"f34": datasets.Value("int64"), |
|
"f35": datasets.Value("int64"), |
|
"f36": datasets.Value("int64"), |
|
"f37": datasets.Value("int64"), |
|
"f38": datasets.Value("int64"), |
|
"f39": datasets.Value("int64"), |
|
"f40": datasets.Value("int64"), |
|
"f41": datasets.Value("int64"), |
|
"f42": datasets.Value("int64"), |
|
"f43": datasets.Value("int64"), |
|
"f44": datasets.Value("int64"), |
|
"f45": datasets.Value("int64"), |
|
"f46": datasets.Value("int64"), |
|
"f47": datasets.Value("int64"), |
|
"f48": datasets.Value("int64"), |
|
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class ElectricityConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(ElectricityConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Electricity(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "pol" |
|
BUILDER_CONFIGS = [ |
|
ElectricityConfig(name="pol", |
|
description="Electricity for binary classification.") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|