|
"""Ionosphere""" |
|
|
|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DESCRIPTION = "Ionosphere dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Ionosphere" |
|
_URLS = ("https://huggingface.co/datasets/mstz/ionosphere/raw/ionosphere.data") |
|
_CITATION = """ |
|
@misc{misc_ionosphere_52, |
|
author = {Sigillito,V., Wing,S., Hutton,L. & Baker,K.}, |
|
title = {{Ionosphere}}, |
|
year = {1989}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5W01B}} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/ionosphere/raw/main/ionosphere.data" |
|
} |
|
features_types_per_config = { |
|
"ionosphere": { |
|
"signal_0": datasets.Value("float64"), |
|
"signal_1": datasets.Value("float64"), |
|
"signal_2": datasets.Value("float64"), |
|
"signal_3": datasets.Value("float64"), |
|
"signal_4": datasets.Value("float64"), |
|
"signal_5": datasets.Value("float64"), |
|
"signal_6": datasets.Value("float64"), |
|
"signal_7": datasets.Value("float64"), |
|
"signal_8": datasets.Value("float64"), |
|
"signal_9": datasets.Value("float64"), |
|
"signal_10": datasets.Value("float64"), |
|
"signal_11": datasets.Value("float64"), |
|
"signal_12": datasets.Value("float64"), |
|
"signal_13": datasets.Value("float64"), |
|
"signal_14": datasets.Value("float64"), |
|
"signal_15": datasets.Value("float64"), |
|
"signal_16": datasets.Value("float64"), |
|
"signal_17": datasets.Value("float64"), |
|
"signal_18": datasets.Value("float64"), |
|
"signal_19": datasets.Value("float64"), |
|
"signal_20": datasets.Value("float64"), |
|
"signal_21": datasets.Value("float64"), |
|
"signal_22": datasets.Value("float64"), |
|
"signal_23": datasets.Value("float64"), |
|
"signal_24": datasets.Value("float64"), |
|
"signal_25": datasets.Value("float64"), |
|
"signal_26": datasets.Value("float64"), |
|
"signal_27": datasets.Value("float64"), |
|
"signal_28": datasets.Value("float64"), |
|
"signal_29": datasets.Value("float64"), |
|
"signal_30": datasets.Value("float64"), |
|
"signal_31": datasets.Value("float64"), |
|
"signal_32": datasets.Value("float64"), |
|
"signal_33": datasets.Value("float64"), |
|
"class": datasets.ClassLabel(num_classes=2) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class IonosphereConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(IonosphereConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Ionosphere(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "ionosphere" |
|
BUILDER_CONFIGS = [ |
|
IonosphereConfig(name="ionosphere", |
|
description="Ionosphere for binary classification."), |
|
] |
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data.columns = [f"signal_{i}" for i in range(data.shape[1] - 1)] + ["class"] |
|
data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == "g" else 0) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|