mstz commited on
Commit
ee71034
1 Parent(s): fe455ac

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +36 -3
  2. heloc.py +10 -10
README.md CHANGED
@@ -6,13 +6,46 @@ tags:
6
  - fico
7
  - tabular_classification
8
  - binary_classification
9
- pretty_name: Compas
10
  size_categories:
11
- - 10K<n<100K
12
  task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
  - tabular-classification
14
  configs:
15
  - risk
16
  ---
17
  # HELOC
18
- The [HELOC dataset](https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=d157e) is cool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - fico
7
  - tabular_classification
8
  - binary_classification
9
+ pretty_name: Heloc
10
  size_categories:
11
+ - 1K<n<10K
12
  task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
  - tabular-classification
14
  configs:
15
  - risk
16
  ---
17
  # HELOC
18
+ The [HELOC dataset](https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=d157e) from FICO.
19
+ Each entry in the dataset is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of a home and its purchase price).
20
+ The customers in this dataset have requested a credit line in the range of $5,000 - $150,000.
21
+ The fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC account within 2 years.
22
+
23
+ # Configurations and tasks
24
+ - `risk` Predict the risk of insolvency.
25
+
26
+ # Features
27
+ |**Feature** |**Type**|
28
+ |-------------------------------------------|--------|
29
+ |`estimate_of_risk` |`int8` |
30
+ |`months_since_first_trade` |`int32` |
31
+ |`months_since_last_trade` |`int32` |
32
+ |`average_duration_of_resolution` |`int32` |
33
+ |`number_of_satisfactory_trades` |`int16` |
34
+ |`nr_trades_insolvent_for_over_60_days` |`int16` |
35
+ |`nr_trades_insolvent_for_over_90_days` |`int16` |
36
+ |`percentage_of_legal_trades` |`int16` |
37
+ |`months_since_last_illegal_trade` |`int32` |
38
+ |`maximum_illegal_trades_over_last_year` |`int8` |
39
+ |`maximum_illegal_trades` |`int16` |
40
+ |`nr_total_trades` |`int16` |
41
+ |`nr_trades_initiated_in_last_year` |`int16` |
42
+ |`percentage_of_installment_trades` |`int16` |
43
+ |`months_since_last_inquiry_not_recent` |`int16` |
44
+ |`nr_inquiries_in_last_6_months` |`int16` |
45
+ |`nr_inquiries_in_last_6_months_not_recent` |`int16` |
46
+ |`net_fraction_of_revolving_burden` |`int32` |
47
+ |`net_fraction_of_installment_burden` |`int32` |
48
+ |`nr_revolving_trades_with_balance` |`int16` |
49
+ |`nr_installment_trades_with_balance` |`int16` |
50
+ |`nr_banks_with_high_ratio` |`int16` |
51
+ |`percentage_trades_with_balance` |`int16` |
heloc.py CHANGED
@@ -136,21 +136,21 @@ class Heloc(datasets.GeneratorBasedBuilder):
136
  ]
137
 
138
  def _generate_examples(self, filepath: str):
139
- data = pandas.read_csv(filepath)
140
- data.columns = _BASE_FEATURE_NAMES
141
- data = self.preprocess(data, config=self.config.name)
 
142
 
143
- for row_id, row in data.iterrows():
144
- data_row = dict(row)
145
 
146
- yield row_id, data_row
 
 
147
 
148
  def preprocess(self, data: pandas.DataFrame, config: str = "risk") -> pandas.DataFrame:
149
  data = data[list(features_types_per_config["risk"].keys())]
150
 
151
  data.loc[:, "is_at_risk"] = data.is_at_risk.apply(lambda x: 1 if x == "Bad" else 0)
152
 
153
- if config == "risk":
154
- return data
155
- else:
156
- raise ValueError(f"Unknown config: {config}")
 
136
  ]
137
 
138
  def _generate_examples(self, filepath: str):
139
+ if self.config.name == "risk":
140
+ data = pandas.read_csv(filepath)
141
+ data.columns = _BASE_FEATURE_NAMES
142
+ data = self.preprocess(data, config=self.config.name)
143
 
144
+ for row_id, row in data.iterrows():
145
+ data_row = dict(row)
146
 
147
+ yield row_id, data_row
148
+ else:
149
+ raise ValueError(f"Unknown config: {self.config.name}")
150
 
151
  def preprocess(self, data: pandas.DataFrame, config: str = "risk") -> pandas.DataFrame:
152
  data = data[list(features_types_per_config["risk"].keys())]
153
 
154
  data.loc[:, "is_at_risk"] = data.is_at_risk.apply(lambda x: 1 if x == "Bad" else 0)
155
 
156
+ return data