|
"""Heloc Dataset""" |
|
|
|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"RiskPerformance", |
|
"ExternalRiskEstimate", |
|
"MSinceOldestTradeOpen", |
|
"MSinceMostRecentTradeOpen", |
|
"AverageMInFile", |
|
"NumSatisfactoryTrades", |
|
"NumTrades60Ever2DerogPubRec", |
|
"NumTrades90Ever2DerogPubRec", |
|
"PercentTradesNeverDelq", |
|
"MSinceMostRecentDelq", |
|
"MaxDelq2PublicRecLast12M", |
|
"MaxDelqEver", |
|
"NumTotalTrades", |
|
"NumTradesOpeninLast12M", |
|
"PercentInstallTrades", |
|
"MSinceMostRecentInqexcl7days", |
|
"NumInqLast6M", |
|
"NumInqLast6Mexcl7days", |
|
"NetFractionRevolvingBurden", |
|
"NetFractionInstallBurden", |
|
"NumRevolvingTradesWBalance", |
|
"NumInstallTradesWBalance", |
|
"NumBank2NatlTradesWHighUtilization", |
|
"PercentTradesWBalance", |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"is_at_risk", |
|
"estimate_of_risk", |
|
"months_since_first_trade", |
|
"months_since_last_trade", |
|
"average_duration_of_resolution", |
|
"number_of_satisfactory_trades", |
|
"nr_trades_insolvent_for_over_60_days", |
|
"nr_trades_insolvent_for_over_90_days", |
|
"percentage_of_legal_trades", |
|
"months_since_last_illegal_trade", |
|
"maximum_illegal_trades_over_last_year", |
|
"maximum_illegal_trades", |
|
"nr_total_trades", |
|
"nr_trades_initiated_in_last_year", |
|
"percentage_of_installment_trades", |
|
"months_since_last_inquiry_not_recent", |
|
"nr_inquiries_in_last_6_months", |
|
"nr_inquiries_in_last_6_months_not_recent", |
|
"net_fraction_of_revolving_burden", |
|
"net_fraction_of_installment_burden", |
|
"nr_revolving_trades_with_balance", |
|
"nr_installment_trades_with_balance", |
|
"nr_banks_with_high_ratio", |
|
"percentage_trades_with_balance" |
|
] |
|
|
|
DESCRIPTION = "Heloc dataset for trade insolvency risk prediction." |
|
_HOMEPAGE = "https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a" |
|
_URLS = ("https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a") |
|
_CITATION = """ |
|
|
|
""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/heloc/raw/main/heloc.csv", |
|
} |
|
features_types_per_config = { |
|
"risk": { |
|
"estimate_of_risk": datasets.Value("int8"), |
|
"months_since_first_trade": datasets.Value("int32"), |
|
"months_since_last_trade": datasets.Value("int32"), |
|
"average_duration_of_resolution": datasets.Value("int32"), |
|
"number_of_satisfactory_trades": datasets.Value("int16"), |
|
"nr_trades_insolvent_for_over_60_days": datasets.Value("int16"), |
|
"nr_trades_insolvent_for_over_90_days": datasets.Value("int16"), |
|
"percentage_of_legal_trades": datasets.Value("int16"), |
|
"months_since_last_illegal_trade": datasets.Value("int32"), |
|
"maximum_illegal_trades_over_last_year": datasets.Value("int8"), |
|
"maximum_illegal_trades": datasets.Value("int16"), |
|
"nr_total_trades": datasets.Value("int16"), |
|
"nr_trades_initiated_in_last_year": datasets.Value("int16"), |
|
"percentage_of_installment_trades": datasets.Value("int16"), |
|
"months_since_last_inquiry_not_recent": datasets.Value("int16"), |
|
"nr_inquiries_in_last_6_months": datasets.Value("int16"), |
|
"nr_inquiries_in_last_6_months_not_recent": datasets.Value("int16"), |
|
"net_fraction_of_revolving_burden": datasets.Value("int32"), |
|
"net_fraction_of_installment_burden": datasets.Value("int32"), |
|
"nr_revolving_trades_with_balance": datasets.Value("int16"), |
|
"nr_installment_trades_with_balance": datasets.Value("int16"), |
|
"nr_banks_with_high_ratio": datasets.Value("int16"), |
|
"percentage_trades_with_balance": datasets.Value("int16"), |
|
"is_at_risk": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class HelocConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(HelocConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Heloc(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "risk" |
|
BUILDER_CONFIGS = [ |
|
HelocConfig(name="risk", |
|
description="Binary classification of trade risk."), |
|
] |
|
|
|
|
|
def _info(self): |
|
if self.config.name not in features_per_config: |
|
raise ValueError(f"Unknown configuration: {self.config.name}") |
|
|
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath) |
|
data.columns = _BASE_FEATURE_NAMES |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = "risk") -> pandas.DataFrame: |
|
data = data[list(features_types_per_config["risk"].keys())] |
|
|
|
data.loc[:, "is_at_risk"] = data.is_at_risk.apply(lambda x: 1 if x == "Bad" else 0) |
|
|
|
if config == "risk": |
|
return data |
|
else: |
|
raise ValueError(f"Unknown config: {config}") |
|
|