Datasets:
File size: 3,580 Bytes
cc4b97d 7abcdc1 cc4b97d f08c9a0 4e6c55b cc4b97d 4e6c55b cc4b97d 4e6c55b cc4b97d 4e6c55b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
"""Heart Failure Dataset"""
from typing import List
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"age",
"has_anaemia",
"creatinine_phosphokinase_concentration_in_blood",
"has_diabetes",
"heart_ejection_fraction",
"has_high_blood_pressure",
"platelets_concentration_in_blood",
"serum_creatinine_concentration_in_blood",
"serum_sodium_concentration_in_blood",
"sex",
"is_smoker",
"days_in_study",
"is_dead"
]
DESCRIPTION = "Heart Failure dataset."
_HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/heart_failures"
_URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/heart_failures")
_CITATION = """"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/heart_failure/raw/main/heart_failure_clinical_records_dataset.csv",
}
features_types_per_config = {
"death": {
"age": datasets.Value("int8"),
"has_anaemia": datasets.Value("int8"),
"creatinine_phosphokinase_concentration_in_blood": datasets.Value("float64"),
"has_diabetes": datasets.Value("int8"),
"heart_ejection_fraction": datasets.Value("float64"),
"has_high_blood_pressure": datasets.Value("int8"),
"platelets_concentration_in_blood": datasets.Value("float64"),
"serum_creatinine_concentration_in_blood": datasets.Value("float64"),
"serum_sodium_concentration_in_blood": datasets.Value("float64"),
"sex": datasets.Value("int8"),
"is_smoker": datasets.Value("int8"),
"days_in_study": datasets.Value("int64"),
"is_dead": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class HeartFailureConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(HeartFailureConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class HeartFailure(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "death"
BUILDER_CONFIGS = [
HeartFailureConfig(name="death",
description="Binary classification, predict if the patient dies.")
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
if self.config.name == "death":
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
else:
raise ValueError(f"Unknown config: {config}")
def preprocess(self, data: pandas.DataFrame, config: str = "death") -> pandas.DataFrame:
data.columns = _BASE_FEATURE_NAMES
return data
|