mstz commited on
Commit
e725d94
·
1 Parent(s): 7369443

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +47 -1
  2. fertility.py +170 -0
  3. fertility_Diagnosis.txt +100 -0
README.md CHANGED
@@ -1,3 +1,49 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - fertility
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: Fertility
10
+ size_categories:
11
+ - 10K<n<100K
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - encoding
16
+ - fertility
17
  ---
18
+ # Fertility
19
+ The [Fertility dataset](https://archive.ics.uci.edu/ml/datasets/Fertility) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
20
+ Classify fertility abnormalities of patients.
21
+
22
+
23
+ # Configurations and tasks
24
+ | **Configuration** | **Task** | **Description** |
25
+ |-------------------|---------------------------|------------------------------------------|
26
+ | encoding | | Encoding dictionary |
27
+ | fertility | Binary classification | Does the patient have fertility issues? |
28
+
29
+
30
+ # Usage
31
+ ```python
32
+ from datasets import load_dataset
33
+
34
+ dataset = load_dataset("mstz/fertility", "fertility")["train"]
35
+ ```
36
+
37
+ # Features
38
+ |**Feature** |**Type** |
39
+ |----------------------------------------|------------------|
40
+ | season_of_sampling | `[string]` |
41
+ | age_at_time_of_sampling | `[int8]` |
42
+ | has_had_childhood_diseases | `[bool]` |
43
+ | has_had_serious_trauma | `[bool]` |
44
+ | has_had_surgical_interventions | `[bool]` |
45
+ | has_had_high_fevers_in_the_past_year | `[string]` |
46
+ | frequency_of_alcohol_consumption | `[float16]` |
47
+ | smoking_frequency | `[string]` |
48
+ | number_of_sitting_hours_per_day | `[float16]` |
49
+
fertility.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Fertility"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+ _BASE_FEATURE_NAMES = [
13
+ "season_of_sampling",
14
+ "age_at_time_of_sampling",
15
+ "has_had_childhood_diseases",
16
+ "has_had_serious_trauma",
17
+ "has_had_surgical_interventions",
18
+ "has_had_high_fevers_in_the_past_year",
19
+ "frequency_of_alcohol_consumption",
20
+ "smoking_frequency",
21
+ "number_of_sitting_hours_per_day",
22
+ "has_fertility_issues"
23
+ ]
24
+
25
+ _ENCODING_DICS = {
26
+ "season_of_sampling" : {
27
+ -1: "winter",
28
+ -0.33: "spring",
29
+ +0.33: "summer",
30
+ +1: "fall",
31
+ },
32
+ "has_had_childhood_diseases" : {
33
+ "yes": True,
34
+ "no": False
35
+ },
36
+ "has_had_serious_trauma" : {
37
+ "yes": True,
38
+ "no": False
39
+ },
40
+ "has_had_surgical_interventions" : {
41
+ "yes": True,
42
+ "no": False
43
+ },
44
+ "has_had_high_fevers_in_the_past_year" : {
45
+ 1: "no",
46
+ 0: "more than three months ago",
47
+ -1: "less than three months ago"
48
+ },
49
+ "smoking_frequency" : {
50
+ 1: "daily",
51
+ 0: "occasionally",
52
+ -1: "never"
53
+ },
54
+ "has_fertility_issues": {
55
+ "N": 0,
56
+ "O": 1
57
+ }
58
+ }
59
+
60
+ DESCRIPTION = "Fertility dataset from the UCI ML repository."
61
+ _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Fertility"
62
+ _URLS = ("https://archive.ics.uci.edu/ml/datasets/Fertility")
63
+ _CITATION = """
64
+ @misc{misc_fertility_244,
65
+ author = {Gil,David & Girela,Jose},
66
+ title = {{Fertility}},
67
+ year = {2013},
68
+ howpublished = {UCI Machine Learning Repository},
69
+ note = {{DOI}: \\url{10.24432/C5Z01Z}}
70
+ }"""
71
+
72
+ # Dataset info
73
+ urls_per_split = {
74
+ "train": "https://huggingface.co/datasets/mstz/fertility/raw/main/fertility_Diagnosis.txt"
75
+ }
76
+ features_types_per_config = {
77
+ "encoding": {
78
+ "feature": datasets.Value("string"),
79
+ "original_value": datasets.Value("string"),
80
+ "encoded_value": datasets.Value("int64"),
81
+ },
82
+ "fertility": {
83
+ "season_of_sampling": datasets.Value("string"),
84
+ "age_at_time_of_sampling": datasets.Value("int8"),
85
+ "has_had_childhood_diseases": datasets.Value("bool"),
86
+ "has_had_serious_trauma": datasets.Value("bool"),
87
+ "has_had_surgical_interventions": datasets.Value("bool"),
88
+ "has_had_high_fevers_in_the_past_year": datasets.Value("string"),
89
+ "frequency_of_alcohol_consumption": datasets.Value("float16"),
90
+ "smoking_frequency": datasets.Value("string"),
91
+ "number_of_sitting_hours_per_day": datasets.Value("float16"),
92
+ "has_fertility_issues": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
93
+ }
94
+ }
95
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
96
+
97
+
98
+ class FertilityConfig(datasets.BuilderConfig):
99
+ def __init__(self, **kwargs):
100
+ super(FertilityConfig, self).__init__(version=VERSION, **kwargs)
101
+ self.features = features_per_config[kwargs["name"]]
102
+
103
+
104
+ class Fertility(datasets.GeneratorBasedBuilder):
105
+ # dataset versions
106
+ DEFAULT_CONFIG = "fertility"
107
+ BUILDER_CONFIGS = [
108
+ FertilityConfig(name="encoding",
109
+ description="Encoding dictionaries for discrete features."),
110
+ FertilityConfig(name="fertility",
111
+ description="Fertility for binary classification.")
112
+ ]
113
+
114
+
115
+ def _info(self):
116
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
117
+ features=features_per_config[self.config.name])
118
+
119
+ return info
120
+
121
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
122
+ downloads = dl_manager.download_and_extract(urls_per_split)
123
+
124
+ return [
125
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
126
+ ]
127
+
128
+ def _generate_examples(self, filepath: str):
129
+ if self.config.name == "encoding":
130
+ data = self.encodings()
131
+
132
+ for row_id, row in data.iterrows():
133
+ data_row = dict(row)
134
+
135
+ yield row_id, data_row
136
+
137
+ else:
138
+ data = pandas.read_csv(filepath)
139
+ data = self.preprocess(data, config=self.config.name)
140
+
141
+ for row_id, row in data.iterrows():
142
+ data_row = dict(row)
143
+
144
+ yield row_id, data_row
145
+
146
+ def encodings(self):
147
+ data = [pandas.DataFrame([(feature, original_value, encoded_value)
148
+ for original_value, encoded_value in d.items()],
149
+ columns=["feature", "original_value", "encoded_value"])
150
+ for feature, d in _ENCODING_DICS.items()]
151
+
152
+ return data
153
+
154
+
155
+ def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
156
+ data.columns = _BASE_FEATURE_NAMES
157
+
158
+ for feature in _ENCODING_DICS:
159
+ encoding_function = partial(self.encode, feature)
160
+ data.loc[:, feature] = data[feature].apply(encoding_function)
161
+
162
+ data = data[list(features_types_per_config[config].keys())]
163
+
164
+ return data
165
+
166
+
167
+ def encode(self, feature, value):
168
+ if feature in _ENCODING_DICS:
169
+ return _ENCODING_DICS[feature][value]
170
+ raise ValueError(f"Unknown feature: {feature}")
fertility_Diagnosis.txt ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -0.33,0.69,0,1,1,0,0.8,0,0.88,N
2
+ -0.33,0.94,1,0,1,0,0.8,1,0.31,O
3
+ -0.33,0.5,1,0,0,0,1,-1,0.5,N
4
+ -0.33,0.75,0,1,1,0,1,-1,0.38,N
5
+ -0.33,0.67,1,1,0,0,0.8,-1,0.5,O
6
+ -0.33,0.67,1,0,1,0,0.8,0,0.5,N
7
+ -0.33,0.67,0,0,0,-1,0.8,-1,0.44,N
8
+ -0.33,1,1,1,1,0,0.6,-1,0.38,N
9
+ 1,0.64,0,0,1,0,0.8,-1,0.25,N
10
+ 1,0.61,1,0,0,0,1,-1,0.25,N
11
+ 1,0.67,1,1,0,-1,0.8,0,0.31,N
12
+ 1,0.78,1,1,1,0,0.6,0,0.13,N
13
+ 1,0.75,1,1,1,0,0.8,1,0.25,N
14
+ 1,0.81,1,0,0,0,1,-1,0.38,N
15
+ 1,0.94,1,1,1,0,0.2,-1,0.25,N
16
+ 1,0.81,1,1,0,0,1,1,0.5,N
17
+ 1,0.64,1,0,1,0,1,-1,0.38,N
18
+ 1,0.69,1,0,1,0,0.8,-1,0.25,O
19
+ 1,0.75,1,1,1,0,1,1,0.25,N
20
+ 1,0.67,1,0,0,0,0.8,1,0.38,O
21
+ 1,0.67,0,0,1,0,0.8,-1,0.25,N
22
+ 1,0.75,1,0,0,0,0.6,0,0.25,N
23
+ 1,0.67,1,1,0,0,0.8,-1,0.25,N
24
+ 1,0.69,1,0,1,-1,1,-1,0.44,O
25
+ 1,0.56,1,0,1,0,1,-1,0.63,N
26
+ 1,0.67,1,0,0,0,1,-1,0.25,N
27
+ 1,0.67,1,0,1,0,0.6,-1,0.38,O
28
+ 1,0.78,1,1,0,1,0.6,-1,0.38,O
29
+ 1,0.58,0,0,1,0,1,-1,0.19,N
30
+ 1,0.67,0,0,1,0,0.6,0,0.5,O
31
+ 1,0.61,1,0,1,0,1,-1,0.63,N
32
+ 1,0.56,1,0,0,0,1,-1,0.44,N
33
+ 1,0.64,0,0,0,0,1,-1,0.63,N
34
+ 1,0.58,1,1,1,0,0.8,0,0.44,N
35
+ 1,0.56,1,1,1,0,1,-1,0.63,N
36
+ -1,0.78,1,1,0,1,0.6,-1,0.38,N
37
+ -1,0.78,1,0,1,0,1,-1,0.25,N
38
+ -1,0.56,1,0,1,0,1,-1,0.63,N
39
+ -1,0.67,0,0,1,0,0.6,0,0.5,O
40
+ -1,0.69,1,0,0,0,1,-1,0.31,N
41
+ -1,0.53,1,1,1,0,0.8,1,0.5,N
42
+ -1,0.56,1,1,0,0,0.8,1,0.5,N
43
+ -1,0.58,1,0,1,-1,0.8,1,0.5,N
44
+ -1,0.56,1,0,0,0,1,-1,0.44,N
45
+ -1,0.53,1,1,0,1,1,0,0.31,N
46
+ -1,0.53,1,0,0,1,1,0,0.44,N
47
+ -0.33,0.56,1,0,0,0,1,-1,0.63,N
48
+ -0.33,0.72,1,1,0,0,0.6,1,0.19,N
49
+ -0.33,0.64,1,1,1,0,0.8,-1,0.31,N
50
+ -0.33,0.75,1,1,1,0,0.6,-1,0.19,N
51
+ -0.33,0.67,1,0,1,0,0.8,-1,0.19,N
52
+ -0.33,0.53,1,1,0,1,1,-1,0.75,N
53
+ -0.33,0.53,1,1,0,0,0.8,0,0.5,N
54
+ -0.33,0.58,1,1,1,-1,0.8,0,0.19,N
55
+ -0.33,0.61,1,0,1,0,1,-1,0.63,N
56
+ -0.33,0.58,1,0,1,0,0.8,1,0.19,N
57
+ -0.33,0.53,1,1,0,0,0.8,0,0.75,N
58
+ -0.33,0.69,1,1,1,-1,1,-1,0.75,N
59
+ -0.33,0.56,1,1,0,0,0.4,1,0.63,N
60
+ 1,0.58,0,0,0,1,0.8,1,0.44,N
61
+ 1,0.56,0,0,0,1,0.8,0,1,N
62
+ -1,0.64,1,0,0,1,1,1,0.25,N
63
+ -1,0.61,1,1,1,0,0.6,-1,0.38,N
64
+ -1,0.56,1,0,0,1,1,-1,0.5,N
65
+ -1,0.53,1,0,0,1,0.8,-1,0.31,N
66
+ -0.33,0.56,0,0,1,0,1,-1,0.56,N
67
+ -0.33,0.5,1,1,0,-1,0.8,0,0.88,N
68
+ -0.33,0.5,1,0,0,1,1,-1,0.47,N
69
+ -0.33,0.5,1,0,0,1,0.8,0,0.31,N
70
+ -0.33,0.5,1,0,1,-1,0.8,-1,0.5,N
71
+ -0.33,0.5,1,1,0,-1,0.8,0,0.88,O
72
+ 0.33,0.69,1,0,0,1,1,-1,0.31,N
73
+ 1,0.56,1,0,0,1,0.6,0,0.5,N
74
+ -1,0.5,1,0,0,1,0.8,-1,0.44,N
75
+ -1,0.53,1,0,0,1,0.8,-1,0.63,N
76
+ -1,0.78,1,0,1,1,1,1,0.25,N
77
+ -1,0.75,1,0,1,1,0.6,0,0.56,N
78
+ -1,0.72,1,1,1,1,0.8,-1,0.19,N
79
+ -1,0.53,1,1,0,1,0.8,-1,0.38,N
80
+ -1,1,1,0,1,1,0.6,0,0.25,N
81
+ -0.33,0.92,1,1,0,1,1,-1,0.63,N
82
+ -1,0.81,1,1,1,1,0.8,0,0.19,N
83
+ -0.33,0.92,1,0,0,1,0.6,-1,0.19,N
84
+ -0.33,0.86,1,1,1,1,1,-1,0.25,N
85
+ -0.33,0.78,1,0,0,1,1,1,0.06,O
86
+ -0.33,0.89,1,1,0,0,0.6,1,0.31,N
87
+ -0.33,0.75,1,1,1,0,0.6,1,0.25,N
88
+ -0.33,0.75,1,1,1,1,0.8,1,0.25,N
89
+ -0.33,0.83,1,1,1,0,1,-1,0.31,N
90
+ -0.33,0.81,1,1,1,0,1,1,0.38,N
91
+ -0.33,0.81,1,1,1,1,0.8,-1,0.38,N
92
+ 0.33,0.78,1,0,0,0,1,1,0.06,N
93
+ 0.33,0.75,1,1,0,0,0.8,-1,0.38,N
94
+ 0.33,0.75,1,0,1,0,0.8,-1,0.44,O
95
+ 1,0.58,1,0,0,0,0.6,1,0.5,N
96
+ -1,0.67,1,0,0,0,1,-1,0.5,N
97
+ -1,0.61,1,0,0,0,0.8,0,0.5,N
98
+ -1,0.67,1,1,1,0,1,-1,0.31,N
99
+ -1,0.64,1,0,1,0,1,0,0.19,N
100
+ -1,0.69,0,1,1,0,0.6,-1,0.19,N