Datasets:
Upload 4 files
Browse files- README.md +29 -1
- chess_rock_vs_pawn.py +143 -0
- kr-vs-kp.data +0 -0
- kr-vs-kp.names +66 -0
README.md
CHANGED
@@ -1,3 +1,31 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- chess
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
- multiclass_classification
|
9 |
+
pretty_name: Adult
|
10 |
+
size_categories:
|
11 |
+
- 1K<n<10K
|
12 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
13 |
+
- tabular-classification
|
14 |
+
configs:
|
15 |
+
- chess
|
16 |
---
|
17 |
+
# Adult
|
18 |
+
The [Adult dataset](https://archive.ics.uci.edu/ml/datasets/Adult) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
|
19 |
+
Census dataset including personal characteristic of a person, and their income threshold.
|
20 |
+
|
21 |
+
# Configurations and tasks
|
22 |
+
| **Configuration** | **Task** | **Description** |
|
23 |
+
|-------------------|---------------------------|--------------------------|
|
24 |
+
| chess | Binary classification | Can the white piece win? |
|
25 |
+
|
26 |
+
# Usage
|
27 |
+
```python
|
28 |
+
from datasets import load_dataset
|
29 |
+
|
30 |
+
dataset = load_dataset("mstz/chess", "chess")["train"]
|
31 |
+
```
|
chess_rock_vs_pawn.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Chess"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
import pandas
|
8 |
+
|
9 |
+
|
10 |
+
VERSION = datasets.Version("1.0.0")
|
11 |
+
_BASE_FEATURE_NAMES = [
|
12 |
+
"bkblk",
|
13 |
+
"bknwy",
|
14 |
+
"bkon8",
|
15 |
+
"bkona",
|
16 |
+
"bkspr",
|
17 |
+
"bkxbq",
|
18 |
+
"bkxcr",
|
19 |
+
"bkxwp",
|
20 |
+
"blxwp",
|
21 |
+
"bxqsq",
|
22 |
+
"cntxt",
|
23 |
+
"dsopp",
|
24 |
+
"dwipd",
|
25 |
+
"hdchk",
|
26 |
+
"katri",
|
27 |
+
"mulch",
|
28 |
+
"qxmsq",
|
29 |
+
"r2ar8",
|
30 |
+
"reskd",
|
31 |
+
"reskr",
|
32 |
+
"rimmx",
|
33 |
+
"rkxwp",
|
34 |
+
"rxmsq",
|
35 |
+
"simpl",
|
36 |
+
"skach",
|
37 |
+
"skewr",
|
38 |
+
"skrxp",
|
39 |
+
"spcop",
|
40 |
+
"stlmt",
|
41 |
+
"thrsk",
|
42 |
+
"wkcti",
|
43 |
+
"wkna8",
|
44 |
+
"wknck",
|
45 |
+
"wkovl",
|
46 |
+
"wkpos",
|
47 |
+
"white_wins"
|
48 |
+
]
|
49 |
+
|
50 |
+
DESCRIPTION = "Chess dataset from the UCI ML repository."
|
51 |
+
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Chess"
|
52 |
+
_URLS = ("https://huggingface.co/datasets/mstz/chess/raw/chess.csv")
|
53 |
+
_CITATION = """
|
54 |
+
@misc{misc_chess_(king-rook_vs._king-pawn)_22,
|
55 |
+
title = {{Chess (King-Rook vs. King-Pawn)}},
|
56 |
+
year = {1989},
|
57 |
+
howpublished = {UCI Machine Learning Repository},
|
58 |
+
note = {{DOI}: \\url{10.24432/C5DK5C}}
|
59 |
+
}"""
|
60 |
+
|
61 |
+
# Dataset info
|
62 |
+
urls_per_split = {
|
63 |
+
"train": "https://huggingface.co/datasets/mstz/chess/raw/main/kr-vs-kp.data"
|
64 |
+
}
|
65 |
+
features_types_per_config = {
|
66 |
+
"chess": {
|
67 |
+
"bkblk": datasets.Value("string"),
|
68 |
+
"bknwy": datasets.Value("string"),
|
69 |
+
"bkon8": datasets.Value("string"),
|
70 |
+
"bkona": datasets.Value("string"),
|
71 |
+
"bkspr": datasets.Value("string"),
|
72 |
+
"bkxbq": datasets.Value("string"),
|
73 |
+
"bkxcr": datasets.Value("string"),
|
74 |
+
"bkxwp": datasets.Value("string"),
|
75 |
+
"blxwp": datasets.Value("string"),
|
76 |
+
"bxqsq": datasets.Value("string"),
|
77 |
+
"cntxt": datasets.Value("string"),
|
78 |
+
"dsopp": datasets.Value("string"),
|
79 |
+
"dwipd": datasets.Value("string"),
|
80 |
+
"hdchk": datasets.Value("string"),
|
81 |
+
"katri": datasets.Value("string"),
|
82 |
+
"mulch": datasets.Value("string"),
|
83 |
+
"qxmsq": datasets.Value("string"),
|
84 |
+
"r2ar8": datasets.Value("string"),
|
85 |
+
"reskd": datasets.Value("string"),
|
86 |
+
"reskr": datasets.Value("string"),
|
87 |
+
"rimmx": datasets.Value("string"),
|
88 |
+
"rkxwp": datasets.Value("string"),
|
89 |
+
"rxmsq": datasets.Value("string"),
|
90 |
+
"simpl": datasets.Value("string"),
|
91 |
+
"skach": datasets.Value("string"),
|
92 |
+
"skewr": datasets.Value("string"),
|
93 |
+
"skrxp": datasets.Value("string"),
|
94 |
+
"spcop": datasets.Value("string"),
|
95 |
+
"stlmt": datasets.Value("string"),
|
96 |
+
"thrsk": datasets.Value("string"),
|
97 |
+
"wkcti": datasets.Value("string"),
|
98 |
+
"wkna8": datasets.Value("string"),
|
99 |
+
"wknck": datasets.Value("string"),
|
100 |
+
"wkovl": datasets.Value("string"),
|
101 |
+
"wkpos": datasets.Value("string"),
|
102 |
+
"white_wins": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
103 |
+
}
|
104 |
+
}
|
105 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
106 |
+
|
107 |
+
|
108 |
+
class ChessConfig(datasets.BuilderConfig):
|
109 |
+
def __init__(self, **kwargs):
|
110 |
+
super(ChessConfig, self).__init__(version=VERSION, **kwargs)
|
111 |
+
self.features = features_per_config[kwargs["name"]]
|
112 |
+
|
113 |
+
|
114 |
+
class Chess(datasets.GeneratorBasedBuilder):
|
115 |
+
# dataset versions
|
116 |
+
DEFAULT_CONFIG = "chess"
|
117 |
+
BUILDER_CONFIGS = [
|
118 |
+
ChessConfig(name="chess",
|
119 |
+
description="Chess for binary classification.")
|
120 |
+
]
|
121 |
+
|
122 |
+
|
123 |
+
def _info(self):
|
124 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
125 |
+
features=features_per_config[self.config.name])
|
126 |
+
|
127 |
+
return info
|
128 |
+
|
129 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
130 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
131 |
+
|
132 |
+
return [
|
133 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
134 |
+
]
|
135 |
+
|
136 |
+
def _generate_examples(self, filepath: str):
|
137 |
+
data = pandas.read_csv(filepath)
|
138 |
+
data = self.preprocess(data, config=self.config.name)
|
139 |
+
|
140 |
+
for row_id, row in data.iterrows():
|
141 |
+
data_row = dict(row)
|
142 |
+
|
143 |
+
yield row_id, data_row
|
kr-vs-kp.data
ADDED
The diff for this file is too large to render.
See raw diff
|
|
kr-vs-kp.names
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1. Title: Chess End-Game -- King+Rook versus King+Pawn on a7
|
2 |
+
(usually abbreviated KRKPA7). The pawn on a7 means it is one square
|
3 |
+
away from queening. It is the King+Rook's side (white) to move.
|
4 |
+
|
5 |
+
2. Sources:
|
6 |
+
(a) Database originally generated and described by Alen Shapiro.
|
7 |
+
(b) Donor/Coder: Rob Holte ([email protected]). The database
|
8 |
+
was supplied to Holte by Peter Clark of the Turing Institute
|
9 |
+
in Glasgow ([email protected]).
|
10 |
+
(c) Date: 1 August 1989
|
11 |
+
|
12 |
+
3. Past Usage:
|
13 |
+
- Alen D. Shapiro (1983,1987), "Structured Induction in Expert Systems",
|
14 |
+
Addison-Wesley. This book is based on Shapiro's Ph.D. thesis (1983)
|
15 |
+
at the University of Edinburgh entitled "The Role of Structured
|
16 |
+
Induction in Expert Systems".
|
17 |
+
- Stephen Muggleton (1987), "Structuring Knowledge by Asking Questions",
|
18 |
+
pp.218-229 in "Progress in Machine Learning", edited by I. Bratko
|
19 |
+
and Nada Lavrac, Sigma Press, Wilmslow, England SK9 5BB.
|
20 |
+
- Robert C. Holte, Liane Acker, and Bruce W. Porter (1989),
|
21 |
+
"Concept Learning and the Problem of Small Disjuncts",
|
22 |
+
Proceedings of IJCAI. Also available as technical report AI89-106,
|
23 |
+
Computer Sciences Department, University of Texas at Austin,
|
24 |
+
Austin, Texas 78712.
|
25 |
+
|
26 |
+
4. Relevant Information:
|
27 |
+
The dataset format is described below. Note: the format of this
|
28 |
+
database was modified on 2/26/90 to conform with the format of all
|
29 |
+
the other databases in the UCI repository of machine learning databases.
|
30 |
+
|
31 |
+
5. Number of Instances: 3196 total
|
32 |
+
|
33 |
+
6. Number of Attributes: 36
|
34 |
+
|
35 |
+
7. Attribute Summaries:
|
36 |
+
Classes (2): -- White-can-win ("won") and White-cannot-win ("nowin").
|
37 |
+
I believe that White is deemed to be unable to win if the Black pawn
|
38 |
+
can safely advance.
|
39 |
+
Attributes: see Shapiro's book.
|
40 |
+
|
41 |
+
8. Missing Attributes: -- none
|
42 |
+
|
43 |
+
9. Class Distribution:
|
44 |
+
In 1669 of the positions (52%), White can win.
|
45 |
+
In 1527 of the positions (48%), White cannot win.
|
46 |
+
|
47 |
+
The format for instances in this database is a sequence of 37 attribute values.
|
48 |
+
Each instance is a board-descriptions for this chess endgame. The first
|
49 |
+
36 attributes describe the board. The last (37th) attribute is the
|
50 |
+
classification: "win" or "nowin". There are 0 missing values.
|
51 |
+
A typical board-description is
|
52 |
+
|
53 |
+
f,f,f,f,f,f,f,f,f,f,f,f,l,f,n,f,f,t,f,f,f,f,f,f,f,t,f,f,f,f,f,f,f,t,t,n,won
|
54 |
+
|
55 |
+
The names of the features do not appear in the board-descriptions.
|
56 |
+
Instead, each feature correponds to a particular position in the
|
57 |
+
feature-value list. For example, the head of this list is the value
|
58 |
+
for the feature "bkblk". The following is the list of features, in
|
59 |
+
the order in which their values appear in the feature-value list:
|
60 |
+
|
61 |
+
[bkblk,bknwy,bkon8,bkona,bkspr,bkxbq,bkxcr,bkxwp,blxwp,bxqsq,cntxt,dsopp,dwipd,
|
62 |
+
hdchk,katri,mulch,qxmsq,r2ar8,reskd,reskr,rimmx,rkxwp,rxmsq,simpl,skach,skewr,
|
63 |
+
skrxp,spcop,stlmt,thrsk,wkcti,wkna8,wknck,wkovl,wkpos,wtoeg]
|
64 |
+
|
65 |
+
In the file, there is one instance (board position) per line.
|
66 |
+
|