adult / adult.py
mstz's picture
Upload adult.py
70e927a
raw
history blame
8.35 kB
"""Diva: A Fraud Detection Dataset"""
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
__ORIGINAL_FEATURE_NAMES = [
"age",
"workclass",
"final_weight",
"education", "education-num",
"marital_status",
"occupation",
"relationship",
"race",
"sex",
"capital_gain",
"capital_loss",
"hours_per_week",
"native_country",
"threshold"
]
__BASE_FEATURE_NAMES = [
"age",
"capital_gain",
"capital_loss",
"education",
"final_weight",
"hours_per_week",
"marital_status",
"native_country",
"occupation",
"race",
"relationship",
"sex",
"workclass",
"threshold",
]
__DESCRIPTION = "Adult dataset from the UCI ML repository."
__HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Adult"
__URLS = ("https://huggingface.co/datasets/mstz/adult/raw/adult.csv")
__CITATION = """
@inproceedings{DBLP:conf/kdd/Kohavi96,
author = {Ron Kohavi},
editor = {Evangelos Simoudis and
Jiawei Han and
Usama M. Fayyad},
title = {Scaling Up the Accuracy of Naive-Bayes Classifiers: {A} Decision-Tree
Hybrid},
booktitle = {Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96), Portland, Oregon, {USA}},
pages = {202--207},
publisher = {{AAAI} Press},
year = {1996},
url = {http://www.aaai.org/Library/KDD/1996/kdd96-033.php},
timestamp = {Mon, 05 Jun 2017 13:20:21 +0200},
biburl = {https://dblp.org/rec/conf/kdd/Kohavi96.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}"""
# Dataset info
__urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/adult/raw/adult_tr.csv",
"test": "https://huggingface.co/datasets/mstz/adult/raw/adult_ts.csv"
}
features_per_config = {
"income": datasets.Features({"age": datasets.Value("int8"),
"capital_gain": datasets.Value("float16"),
"capital_loss": datasets.Value("float16"),
"education": datasets.Value("int8"),
"final_weight": datasets.Value("int16"),
"hours_per_week": datasets.Value("int16"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"race": datasets.Value("string"),
"relationship": datasets.Value("string"),
"sex": datasets.Value("binary"),
"workclass": datasets.Value("binary"),
"threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}),
"income-no race": datasets.Features({"age": datasets.Value("int8"),
"capital_gain": datasets.Value("float16"),
"capital_loss": datasets.Value("float16"),
"education": datasets.Value("int8"),
"final_weight": datasets.Value("int16"),
"hours_per_week": datasets.Value("int16"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"relationship": datasets.Value("string"),
"sex": datasets.Value("binary"),
"workclass": datasets.Value("binary"),
"threshold": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}),
"race": datasets.Features({"age": datasets.Value("int8"),
"capital_gain": datasets.Value("float16"),
"capital_loss": datasets.Value("float16"),
"education": datasets.Value("int8"),
"final_weight": datasets.Value("int16"),
"hours_per_week": datasets.Value("int16"),
"marital_status": datasets.Value("string"),
"native_country": datasets.Value("string"),
"occupation": datasets.Value("string"),
"relationship": datasets.Value("string"),
"sex": datasets.Value("binary"),
"workclass": datasets.Value("binary"),
"over_threshold": datasets.Value("binary"),
"race": datasets.ClassLabel(num_classes=5, names=["White",
"Black",
"Asian-Pac-Islander",
"Amer-Indian-Eskimo",
"Other"]),
}),
}
class AdultConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(AdultConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Adult(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "income"
BUILDER_CONFIGS = [
AdultConfig(name="income",
description="Adult for income threshold binary classification."),
AdultConfig(name="income-no race",
description="Adult for income threshold binary classification, race excluded from features."),
AdultConfig(name="race",
description="Adult for race multiclass classification."),
]
def _info(self):
if self.config_name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config_name}")
info = datasets.DatasetInfo(description=__DESCRIPTION, citation=__CITATION, homepage=__HOMEPAGE,
features=features_per_config[self.config_name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(__urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config_name)
for row in data.iterrows():
data_row = dict(row)
row_id = hash(str(data_row))
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
data.drop(["education"], inplace=True)
data = data[["age", "capital_gain", "capital_loss", "education", "final_weight",
"hours_per_week", "marital_status", "native_country", "occupation",
"race", "relationship", "sex", "workclass", "threshold"]]
data.columns = __BASE_FEATURE_NAMES
return data
def income_preprocessing(data: pandas.DataFrame) -> pandas.DataFrame:
data = data[features_per_config["income"]]
return data
def income_norace_preprocessing(data: pandas.DataFrame) -> pandas.DataFrame:
data = data[features_per_config["income-no race"]]
return data
def race_preprocessing(data: pandas.DataFrame) -> pandas.DataFrame:
data["over_threshold"] = df.threshold
data = data[features_per_config["race"]]
return data
# TODO: add custom split?