|
"""Abalone.""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"Sex", |
|
"Length", |
|
"Diameter", |
|
"Height", |
|
"Whole_weight", |
|
"Shucked_weight", |
|
"Viscera_weight", |
|
"Shell_weight", |
|
"Ring", |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"sex", |
|
"length", |
|
"diameter", |
|
"height", |
|
"whole_weight", |
|
"shucked_weight", |
|
"viscera_weight", |
|
"shell_weight", |
|
"number_of_rings", |
|
] |
|
|
|
DESCRIPTION = "Abalone dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Abalone" |
|
_URLS = ("https://huggingface.co/datasets/mstz/abalone/raw/abalone.data") |
|
_CITATION = """ |
|
@misc{misc_abalone_1, |
|
title = {{Abalone}}, |
|
year = {1995}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C55C7W}} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/abalone/raw/main/abalone.data", |
|
} |
|
features_types_per_config = { |
|
"abalone": { |
|
"sex": datasets.Value("string"), |
|
"length": datasets.Value("float64"), |
|
"diameter": datasets.Value("float64"), |
|
"Height": datasets.Value("float64"), |
|
"whole_weight": datasets.Value("float64"), |
|
"shucked_weight": datasets.Value("float64"), |
|
"viscera_weight": datasets.Value("float64"), |
|
"shell_weight": datasets.Value("float64"), |
|
"ring": datasets.Value("int8") |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class AbaloneConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(AbaloneConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Abalone(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "abalone" |
|
BUILDER_CONFIGS = [ |
|
AbaloneConfig(name="abalone", |
|
description="Abalone for regression."), |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|