|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets import BuilderConfig |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{duan2024boosting, |
|
title={Boosting the Predictive Power of Protein Representations with a Corpus of Text Annotations}, |
|
author={Duan, Haonan and Skreta, Marta and Cotta, Leonardo and Rajaonson, Ella Miray and Dhawan, Nikita and Aspuru-Guzik, Alán and Maddison, Chris J}, |
|
journal={bioRxiv}, |
|
pages={2024--07}, |
|
year={2024}, |
|
publisher={Cold Spring Harbor Laboratory} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_URLS = { |
|
"first_domain": "https://huggingface.co/datasets/mskrt/PAIR/raw/main/test.json", |
|
} |
|
|
|
|
|
|
|
annotation2type = { |
|
"names": datasets.Value("string"), |
|
"function": datasets.Value("string"), |
|
"EC": datasets.Sequence(datasets.Value("string")), |
|
} |
|
|
|
|
|
class CustomConfig(datasets.BuilderConfig): |
|
"""CustomConfig.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""__init__. |
|
|
|
Parameters |
|
---------- |
|
kwargs : |
|
kwargs |
|
""" |
|
self.annotation_type = kwargs.pop("annotation_type", "function") |
|
super(CustomConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PAIRDataset(datasets.GeneratorBasedBuilder): |
|
"""PAIRDataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
CustomConfig( |
|
name="custom_config", |
|
version="1.0.0", |
|
description="your description", |
|
), |
|
] |
|
BUILDER_CONFIG_CLASS = CustomConfig |
|
|
|
def _info(self): |
|
"""_info.""" |
|
self.annotation_type = self.config_kwargs["annotation_type"] |
|
|
|
return datasets.DatasetInfo( |
|
description="My custom dataset.", |
|
features=datasets.Features( |
|
{ |
|
self.annotation_type: annotation2type[self.annotation_type], |
|
"sequence": datasets.Value("string"), |
|
"pid": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
) |
|
|
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
"""_split_generators. |
|
|
|
Parameters |
|
---------- |
|
dl_manager : |
|
dl_manager |
|
""" |
|
|
|
|
|
print("in generator self.annotation", self.annotation_type) |
|
data_files = { |
|
"train": "train.json", |
|
"test": "test.json", |
|
} |
|
return [ |
|
|
|
|
|
|
|
|
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""_generate_examples. |
|
|
|
Parameters |
|
---------- |
|
filepath : |
|
filepath |
|
""" |
|
|
|
print("in generator 2 self.annotation", self.annotation_type) |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
counter = 0 |
|
for idx, annotation_type in enumerate(data.keys()): |
|
print(annotation_type, self.annotation_type) |
|
if annotation_type != self.annotation_type: |
|
continue |
|
|
|
samples = data[annotation_type] |
|
for idx_2, elem in enumerate(samples): |
|
|
|
if elem["content"] != [None]: |
|
content = elem["content"][0] |
|
|
|
yield counter, { |
|
"sequence": elem["seq"], |
|
"pid": elem["pid"], |
|
annotation_type: content, |
|
} |
|
counter += 1 |
|
|
|
|
|
|