Julia Moska commited on
Commit
0ae3740
1 Parent(s): 179e7ee

added tryout script

Browse files
Files changed (1) hide show
  1. test_parquet.py +56 -0
test_parquet.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import datasets
3
+ import pyarrow as pa
4
+ import pyarrow.parquet as pq
5
+ logger = datasets.utils.logging.get_logger(__name__)
6
+
7
+
8
+
9
+ _URLS = { "train": "https://huggingface.co/datasets/moska/test_parquet/resolve/main/data/example.parquet" }
10
+
11
+
12
+
13
+ class ParquetDataset(datasets.ArrowBasedBuilder):
14
+ BUILDER_CONFIGS = [
15
+ datasets.BuilderConfig(
16
+ version=datasets.Version(version="0.0.1"),
17
+ description=f"test_parquet dataset.",
18
+ )
19
+
20
+ ]
21
+
22
+
23
+
24
+ def _info(self):
25
+ return datasets.DatasetInfo(
26
+ # This is the description that will appear on the datasets page.
27
+ description="reading parquet format.",
28
+ # This defines the different columns of the dataset and their types
29
+ features=datasets.Features(
30
+ { "pop_est": datasets.Value(dtype="float64"),
31
+ "continent": datasets.Value(dtype="string"),
32
+ "name": datasets.Value(dtype="string"),
33
+ "iso_a3": datasets.Value(dtype="string"),
34
+ "gdp_md_est": datasets.Value(dtype="int64"),
35
+ "geometry": datasets.Value("binary"),
36
+ # These are the features of your dataset like images, labels ...
37
+ }
38
+ ),
39
+ )
40
+
41
+
42
+ def _split_generators(self, dl_manager: datasets.download.DownloadManager):
43
+ files = _URLS[self.config.name]
44
+ downloaded_files = dl_manager.download(files)
45
+ return [
46
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']})
47
+ ]
48
+
49
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
50
+ def _generate_tables(self, filepaths: list[str]):
51
+ for file_idx, filepath in enumerate(filepaths):
52
+ with open(filepath, mode="rb") as f:
53
+ parquet_file = pq.ParquetFile(source=filepath)
54
+ for batch_idx, record_batch in enumerate(parquet_file.iter_batches()):
55
+ pa_table = pa.Table.from_batches([record_batch])
56
+ yield f"{file_idx}_{batch_idx}", pa_table