Upload WISDM2.py
Browse files
WISDM2.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Monster-Monash custom downloader"""
|
15 |
+
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import os
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_DATASET = "WISDM2"
|
23 |
+
_SHAPE = (3, 100)
|
24 |
+
#_DESCRIPTION = ""
|
25 |
+
#_CITATION = ""
|
26 |
+
#_HOMEPAGE = ""
|
27 |
+
#_LICENSE = ""
|
28 |
+
|
29 |
+
_URLS = {
|
30 |
+
'data': f"{_DATASET}_X.npy",
|
31 |
+
'labels': f"{_DATASET}_y.npy",
|
32 |
+
'fold_0': "test_indices_fold_0.txt",
|
33 |
+
'fold_1': "test_indices_fold_1.txt",
|
34 |
+
'fold_2': "test_indices_fold_2.txt",
|
35 |
+
'fold_3': "test_indices_fold_3.txt",
|
36 |
+
'fold_4': "test_indices_fold_4.txt",
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class Monster(datasets.GeneratorBasedBuilder):
|
41 |
+
"""Generic Monster class for all downloader."""
|
42 |
+
|
43 |
+
VERSION = datasets.Version("1.0.0")
|
44 |
+
|
45 |
+
BUILDER_CONFIGS = [
|
46 |
+
datasets.BuilderConfig(name="full", version=VERSION, description="All data"),
|
47 |
+
datasets.BuilderConfig(name="fold_0", version=VERSION, description="Cross-validation fold 0"),
|
48 |
+
datasets.BuilderConfig(name="fold_1", version=VERSION, description="Cross-validation fold 1"),
|
49 |
+
datasets.BuilderConfig(name="fold_2", version=VERSION, description="Cross-validation fold 2"),
|
50 |
+
datasets.BuilderConfig(name="fold_3", version=VERSION, description="Cross-validation fold 3"),
|
51 |
+
datasets.BuilderConfig(name="fold_4", version=VERSION, description="Cross-validation fold 4"),
|
52 |
+
]
|
53 |
+
|
54 |
+
DEFAULT_CONFIG_NAME = "full" # By default all data is returned in a single split.
|
55 |
+
|
56 |
+
def _info(self):
|
57 |
+
features = datasets.Features(
|
58 |
+
{
|
59 |
+
"X": datasets.Array2D(_SHAPE, "float32"),
|
60 |
+
"y": datasets.Value("int64")
|
61 |
+
}
|
62 |
+
)
|
63 |
+
return datasets.DatasetInfo(
|
64 |
+
# description=_DESCRIPTION,
|
65 |
+
features=features,
|
66 |
+
supervised_keys=("X", "y"),
|
67 |
+
# homepage=_HOMEPAGE,
|
68 |
+
# license=_LICENSE,
|
69 |
+
# citation=_CITATION,
|
70 |
+
)
|
71 |
+
|
72 |
+
def _split_generators(self, dl_manager):
|
73 |
+
data = dl_manager.download_and_extract(_URLS['data'])
|
74 |
+
labels = dl_manager.download_and_extract(_URLS['labels'])
|
75 |
+
if self.config.name == "full":
|
76 |
+
return [
|
77 |
+
datasets.SplitGenerator(
|
78 |
+
name=datasets.Split.TRAIN,
|
79 |
+
gen_kwargs={
|
80 |
+
"data": data,
|
81 |
+
"labels": labels,
|
82 |
+
"fold": None,
|
83 |
+
"split": "all",
|
84 |
+
},
|
85 |
+
),
|
86 |
+
]
|
87 |
+
else:
|
88 |
+
fold = dl_manager.download_and_extract(_URLS[self.config.name])
|
89 |
+
return [
|
90 |
+
datasets.SplitGenerator(
|
91 |
+
name=datasets.Split.TRAIN,
|
92 |
+
gen_kwargs={
|
93 |
+
"data": data,
|
94 |
+
"labels": labels,
|
95 |
+
"fold": fold,
|
96 |
+
"split": "train",
|
97 |
+
},
|
98 |
+
),
|
99 |
+
datasets.SplitGenerator(
|
100 |
+
name=datasets.Split.TEST,
|
101 |
+
gen_kwargs={
|
102 |
+
"data": data,
|
103 |
+
"labels": labels,
|
104 |
+
"fold": fold,
|
105 |
+
"split": "test"
|
106 |
+
},
|
107 |
+
),
|
108 |
+
]
|
109 |
+
|
110 |
+
def _generate_examples(self, data, labels, fold, split):
|
111 |
+
X = np.load(data)
|
112 |
+
y = np.load(labels)
|
113 |
+
if self.config.name == "full":
|
114 |
+
for row in range(y.shape[0]):
|
115 |
+
yield(row, {"X": X[row], "y": y[row]})
|
116 |
+
else:
|
117 |
+
test_indices = np.loadtxt(fold, dtype='int')
|
118 |
+
if split == "test":
|
119 |
+
for row in test_indices:
|
120 |
+
yield(int(row), {"X": X[row], "y": y[row]})
|
121 |
+
elif split == "train":
|
122 |
+
train_indices = np.delete(np.arange(y.shape[0]), test_indices)
|
123 |
+
for row in train_indices:
|
124 |
+
yield(int(row), {"X": X[row], "y": y[row]})
|