|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Monster-Monash custom downloader"""
|
|
|
|
|
|
import numpy as np
|
|
import os
|
|
import datasets
|
|
|
|
|
|
_DATASET = "LenDB"
|
|
_SHAPE = (3, 540)
|
|
|
|
|
|
|
|
|
|
|
|
_URLS = {
|
|
'data': f"{_DATASET}_X.npy",
|
|
'labels': f"{_DATASET}_y.npy",
|
|
'fold_0': "test_indices_fold_0.txt",
|
|
'fold_1': "test_indices_fold_1.txt",
|
|
'fold_2': "test_indices_fold_2.txt",
|
|
'fold_3': "test_indices_fold_3.txt",
|
|
'fold_4': "test_indices_fold_4.txt",
|
|
}
|
|
|
|
|
|
class Monster(datasets.GeneratorBasedBuilder):
|
|
"""Generic Monster class for all downloader."""
|
|
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
BUILDER_CONFIGS = [
|
|
datasets.BuilderConfig(name="full", version=VERSION, description="All data"),
|
|
datasets.BuilderConfig(name="fold_0", version=VERSION, description="Cross-validation fold 0"),
|
|
datasets.BuilderConfig(name="fold_1", version=VERSION, description="Cross-validation fold 1"),
|
|
datasets.BuilderConfig(name="fold_2", version=VERSION, description="Cross-validation fold 2"),
|
|
datasets.BuilderConfig(name="fold_3", version=VERSION, description="Cross-validation fold 3"),
|
|
datasets.BuilderConfig(name="fold_4", version=VERSION, description="Cross-validation fold 4"),
|
|
]
|
|
|
|
DEFAULT_CONFIG_NAME = "full"
|
|
|
|
def _info(self):
|
|
features = datasets.Features(
|
|
{
|
|
"X": datasets.Array2D(_SHAPE, "float32"),
|
|
"y": datasets.Value("int64")
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
|
|
features=features,
|
|
supervised_keys=("X", "y"),
|
|
|
|
|
|
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
data = dl_manager.download_and_extract(_URLS['data'])
|
|
labels = dl_manager.download_and_extract(_URLS['labels'])
|
|
if self.config.name == "full":
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"data": data,
|
|
"labels": labels,
|
|
"fold": None,
|
|
"split": "all",
|
|
},
|
|
),
|
|
]
|
|
else:
|
|
fold = dl_manager.download_and_extract(_URLS[self.config.name])
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"data": data,
|
|
"labels": labels,
|
|
"fold": fold,
|
|
"split": "train",
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"data": data,
|
|
"labels": labels,
|
|
"fold": fold,
|
|
"split": "test"
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, data, labels, fold, split):
|
|
X = np.load(data)
|
|
y = np.load(labels)
|
|
if self.config.name == "full":
|
|
for row in range(y.shape[0]):
|
|
yield(row, {"X": X[row], "y": y[row]})
|
|
else:
|
|
test_indices = np.loadtxt(fold, dtype='int')
|
|
if split == "test":
|
|
for row in test_indices:
|
|
yield(int(row), {"X": X[row], "y": y[row]})
|
|
elif split == "train":
|
|
train_indices = np.delete(np.arange(y.shape[0]), test_indices)
|
|
for row in train_indices:
|
|
yield(int(row), {"X": X[row], "y": y[row]})
|
|
|