Datasets:

File size: 6,327 Bytes
17c8210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409dcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c8210
b2c350a
17c8210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3777f1d
17c8210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c350a
17c8210
 
b2c350a
17c8210
 
65d6534
b2c350a
17c8210
 
 
 
 
7e48e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import json
import gzip
import datasets
import os


_CITATION = """\

"""

_DESCRIPTION = """\

"""

_HOMEPAGE = ""


_LICENSE = ""

# TODO: Add link to the official dataset URLs here

_FILES = {
 '0': ['part_0_0.jsonl.gz', 'part_0_1.jsonl.gz', 'part_0_2.jsonl.gz'],
 '1': ['part_1_0.jsonl.gz', 'part_1_1.jsonl.gz', 'part_1_2.jsonl.gz'],
 '2': ['part_2_0.jsonl.gz', 'part_2_1.jsonl.gz', 'part_2_2.jsonl.gz'],
 '3': ['part_3_0.jsonl.gz', 'part_3_1.jsonl.gz', 'part_3_2.jsonl.gz'],
 '4': ['part_4_0.jsonl.gz', 'part_4_1.jsonl.gz', 'part_4_2.jsonl.gz'],
 '5': ['part_5_0.jsonl.gz', 'part_5_1.jsonl.gz', 'part_5_2.jsonl.gz'],
 '6': ['part_6_0.jsonl.gz', 'part_6_1.jsonl.gz'],
 '7': ['part_7_0.jsonl.gz', 'part_7_1.jsonl.gz', 'part_7_2.jsonl.gz'],
 '8': ['part_8_0.jsonl.gz', 'part_8_1.jsonl.gz'],
 '9': ['part_9_0.jsonl.gz', 'part_9_1.jsonl.gz'],
 '10': ['part_10_0.jsonl.gz', 'part_10_1.jsonl.gz'],
 '11': ['part_11_0.jsonl.gz', 'part_11_1.jsonl.gz'],
 '12': ['part_12_0.jsonl.gz', 'part_12_1.jsonl.gz'],
 '13': ['part_13_0.jsonl.gz', 'part_13_1.jsonl.gz'],
 '14': ['part_14_0.jsonl.gz', 'part_14_1.jsonl.gz']
 }
 
_URLS = {
    "all_data": "data/all_data"
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class OAGKx(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="extraction", version=VERSION,
                               description="This part of my dataset covers extraction"),
        datasets.BuilderConfig(name="generation", version=VERSION,
                               description="This part of my dataset covers generation"),
        datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data"),
    ]

    DEFAULT_CONFIG_NAME = "extraction"

    def _info(self):
        _URLS['all_data']=['data/' + filename for part in _FILES for filename in _FILES[part]]
        if self.config.name == "extraction":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "document": datasets.features.Sequence(datasets.Value("string")),
                    "doc_bio_tags": datasets.features.Sequence(datasets.Value("string"))

                }
            )
        elif self.config.name == "generation":
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "document": datasets.features.Sequence(datasets.Value("string")),
                    "extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                    "abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))

                }
            )
        else:
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "document": datasets.features.Sequence(datasets.Value("string")),
                    "doc_bio_tags": datasets.features.Sequence(datasets.Value("string")),
                    "extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                    "abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
                    "other_metadata": datasets.features.Sequence(
                        {
                            "text": datasets.features.Sequence(datasets.Value("string")),
                            "bio_tags": datasets.features.Sequence(datasets.Value("string"))
                        }
                    )

                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        data_dir = dl_manager.download_and_extract(_URLS)
        print(data_dir["all_data"])
        return [
            datasets.SplitGenerator(
                name="all_data",
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepaths": data_dir["all_data"],
                    "split": "all_data",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepaths, split):
        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                for key, row in enumerate(f):
                    data = json.loads(row)
                    if self.config.name == "extraction":
                        # Yields examples as (key, example) tuples
                        yield key, {
                            "id": data.get("paper_id"),
                            "document": data["document"],
                            "doc_bio_tags": data.get("doc_bio_tags")
                        }
                    elif self.config.name == "generation":
                        yield key, {
                            "id": data.get("paper_id"),
                            "document": data["document"],
                            "extractive_keyphrases": data.get("extractive_keyphrases"),
                            "abstractive_keyphrases": data.get("abstractive_keyphrases")
                        }
                    else:
                        yield key, {
                            "id": data.get("paper_id"),
                            "document": data["document"],
                            "doc_bio_tags": data.get("doc_bio_tags"),
                            "extractive_keyphrases": data.get("extractive_keyphrases"),
                            "abstractive_keyphrases": data.get("abstractive_keyphrases"),
                            "other_metadata": data["other_metadata"]
                        }