parquet-converter commited on
Commit
b2c17e4
·
verified ·
1 Parent(s): 8a8e679

Update parquet files

Browse files
README.md DELETED
@@ -1,217 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - crowdsourced
4
- language_creators:
5
- - crowdsourced
6
- language:
7
- - en
8
- license:
9
- - unknown
10
- multilinguality:
11
- - monolingual
12
- pretty_name: Cats Vs. Dogs
13
- size_categories:
14
- - 10K<n<100K
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - image-classification
19
- task_ids:
20
- - multi-class-image-classification
21
- paperswithcode_id: cats-vs-dogs
22
- dataset_info:
23
- features:
24
- - name: image
25
- dtype: image
26
- - name: labels
27
- dtype:
28
- class_label:
29
- names:
30
- 0: cat
31
- 1: dog
32
- splits:
33
- - name: train
34
- num_bytes: 4219400
35
- num_examples: 23410
36
- download_size: 824887076
37
- dataset_size: 4219400
38
- ---
39
-
40
- # Dataset Card for Cats Vs. Dogs
41
-
42
- ## Table of Contents
43
- - [Table of Contents](#table-of-contents)
44
- - [Dataset Description](#dataset-description)
45
- - [Dataset Summary](#dataset-summary)
46
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
47
- - [Languages](#languages)
48
- - [Dataset Structure](#dataset-structure)
49
- - [Data Instances](#data-instances)
50
- - [Data Fields](#data-fields)
51
- - [Data Splits](#data-splits)
52
- - [Dataset Creation](#dataset-creation)
53
- - [Curation Rationale](#curation-rationale)
54
- - [Source Data](#source-data)
55
- - [Annotations](#annotations)
56
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
57
- - [Considerations for Using the Data](#considerations-for-using-the-data)
58
- - [Social Impact of Dataset](#social-impact-of-dataset)
59
- - [Discussion of Biases](#discussion-of-biases)
60
- - [Other Known Limitations](#other-known-limitations)
61
- - [Additional Information](#additional-information)
62
- - [Dataset Curators](#dataset-curators)
63
- - [Licensing Information](#licensing-information)
64
- - [Citation Information](#citation-information)
65
- - [Contributions](#contributions)
66
-
67
- ## Dataset Description
68
-
69
- - **Homepage:** [Cats vs Dogs Dataset](https://www.microsoft.com/en-us/download/details.aspx?id=54765)
70
- - **Repository:**
71
- - **Paper:** [Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization](https://www.microsoft.com/en-us/research/wp-content/uploads/2007/10/CCS2007.pdf)
72
- - **Leaderboard:** [Dogs vs. Cats](https://www.kaggle.com/competitions/dogs-vs-cats)
73
- - **Point of Contact:**
74
-
75
- ### Dataset Summary
76
-
77
- A large set of images of cats and dogs. There are 1738 corrupted images that are dropped. This dataset is part of a now-closed Kaggle competition and represents a subset of the so-called Asirra dataset.
78
-
79
- From the competition page:
80
-
81
- > The Asirra data set
82
- >
83
- > Web services are often protected with a challenge that's supposed to be easy for people to solve, but difficult for computers. Such a challenge is often called a [CAPTCHA](http://www.captcha.net/) (Completely Automated Public Turing test to tell Computers and Humans Apart) or HIP (Human Interactive Proof). HIPs are used for many purposes, such as to reduce email and blog spam and prevent brute-force attacks on web site passwords.
84
- >
85
- > Asirra (Animal Species Image Recognition for Restricting Access) is a HIP that works by asking users to identify photographs of cats and dogs. This task is difficult for computers, but studies have shown that people can accomplish it quickly and accurately. Many even think it's fun! Here is an example of the Asirra interface:
86
- >
87
- > Asirra is unique because of its partnership with [Petfinder.com](https://www.petfinder.com/), the world's largest site devoted to finding homes for homeless pets. They've provided Microsoft Research with over three million images of cats and dogs, manually classified by people at thousands of animal shelters across the United States. Kaggle is fortunate to offer a subset of this data for fun and research.
88
-
89
- ### Supported Tasks and Leaderboards
90
-
91
- - `image-classification`: The goal of this task is to classify a given image as either containing a cat or a dog. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-cats-vs-dogs).
92
-
93
- ### Languages
94
-
95
- English.
96
-
97
- ## Dataset Structure
98
-
99
- ### Data Instances
100
-
101
- A sample from the training set is provided below:
102
-
103
- ```
104
- {
105
- 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x375 at 0x29CEAD71780>,
106
- 'labels': 0
107
- }
108
- ```
109
-
110
- ### Data Fields
111
-
112
- The data instances have the following fields:
113
-
114
- - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
115
- - `labels`: an `int` classification label.
116
-
117
- Class Label Mappings:
118
-
119
- ```
120
- {
121
- "cat": 0,
122
- "dog": 1,
123
- }
124
- ```
125
-
126
- ### Data Splits
127
-
128
- | | train |
129
- |---------------|------:|
130
- | # of examples | 23410 |
131
-
132
- ## Dataset Creation
133
-
134
- ### Curation Rationale
135
-
136
- This subset was to built to test whether computer vision algorithms can beat the Asirra CAPTCHA:
137
-
138
- From the competition page:
139
-
140
- > Image recognition attacks
141
- >
142
- > While random guessing is the easiest form of attack, various forms of image recognition can allow an attacker to make guesses that are better than random. There is enormous diversity in the photo database (a wide variety of backgrounds, angles, poses, lighting, etc.), making accurate automatic classification difficult. In an informal poll conducted many years ago, computer vision experts posited that a classifier with better than 60% accuracy would be difficult without a major advance in the state of the art. For reference, a 60% classifier improves the guessing probability of a 12-image HIP from 1/4096 to 1/459.
143
-
144
- ### Source Data
145
-
146
- #### Initial Data Collection and Normalization
147
-
148
- This dataset is a subset of the Asirra dataset.
149
-
150
- From the competition page:
151
-
152
- > Asirra is unique because of its partnership with Petfinder.com, the world's largest site devoted to finding homes for homeless pets. They've provided Microsoft Research with over three million images of cats and dogs, manually classified by people at thousands of animal shelters across the United States.
153
-
154
- #### Who are the source language producers?
155
-
156
- The users of [Petfinder.com](https://www.petfinder.com/).
157
-
158
- ### Annotations
159
-
160
- #### Annotation process
161
-
162
- The images were annotated by selecting a pet category on [Petfinder.com](https://www.petfinder.com/).
163
-
164
- #### Who are the annotators?
165
-
166
- The users of [Petfinder.com](https://www.petfinder.com/).
167
-
168
- ### Personal and Sensitive Information
169
-
170
- [More Information Needed]
171
-
172
- ## Considerations for Using the Data
173
-
174
- ### Social Impact of Dataset
175
-
176
- [More Information Needed]
177
-
178
- ### Discussion of Biases
179
-
180
- From the paper:
181
-
182
- > Unlike many image-based CAPTCHAs which are abstract or subjective, Asirra’s challenges are concrete, inoffensive (cute, by some accounts), require no specialized or culturally biased knowledge, and have definite ground truth. This
183
- makes Asirra less frustrating for humans. Some beta-testers found it fun. The four-year-old child of one asked several times to “play the cat and dog game again.”
184
-
185
-
186
- ### Other Known Limitations
187
-
188
- [More Information Needed]
189
-
190
- ## Additional Information
191
-
192
- ### Dataset Curators
193
-
194
- [More Information Needed]
195
-
196
- ### Licensing Information
197
-
198
- [More Information Needed]
199
-
200
- ### Citation Information
201
-
202
- ```bibtex
203
- @Inproceedings (Conference){asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization,
204
- author = {Elson, Jeremy and Douceur, John (JD) and Howell, Jon and Saul, Jared},
205
- title = {Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization},
206
- booktitle = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},
207
- year = {2007},
208
- month = {October},
209
- publisher = {Association for Computing Machinery, Inc.},
210
- url = {https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/},
211
- edition = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},
212
- }
213
- ```
214
-
215
- ### Contributions
216
-
217
- Thanks to [@nateraw](https://github.com/nateraw) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cats_vs_dogs.py DELETED
@@ -1,80 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """The Microsoft Cats vs. Dogs dataset"""
16
-
17
- import os
18
- from typing import List
19
-
20
- import datasets
21
- from datasets.tasks import ImageClassification
22
-
23
-
24
- logger = datasets.logging.get_logger(__name__)
25
-
26
- _URL = "https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_5340.zip"
27
-
28
- _HOMEPAGE = "https://www.microsoft.com/en-us/download/details.aspx?id=54765"
29
-
30
- _DESCRIPTION = "A large set of images of cats and dogs. There are 1738 corrupted images that are dropped."
31
-
32
- _CITATION = """\
33
- @Inproceedings (Conference){asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization,
34
- author = {Elson, Jeremy and Douceur, John (JD) and Howell, Jon and Saul, Jared},
35
- title = {Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization},
36
- booktitle = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},
37
- year = {2007},
38
- month = {October},
39
- publisher = {Association for Computing Machinery, Inc.},
40
- url = {https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/},
41
- edition = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},
42
- }
43
- """
44
-
45
-
46
- class CatsVsDogs(datasets.GeneratorBasedBuilder):
47
- VERSION = datasets.Version("1.0.0")
48
-
49
- def _info(self):
50
- return datasets.DatasetInfo(
51
- description=_DESCRIPTION,
52
- features=datasets.Features(
53
- {
54
- "image": datasets.Image(),
55
- "labels": datasets.features.ClassLabel(names=["cat", "dog"]),
56
- }
57
- ),
58
- supervised_keys=("image", "labels"),
59
- task_templates=[ImageClassification(image_column="image", label_column="labels")],
60
- homepage=_HOMEPAGE,
61
- citation=_CITATION,
62
- )
63
-
64
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
65
- images_path = os.path.join(dl_manager.download_and_extract(_URL), "PetImages")
66
- return [
67
- datasets.SplitGenerator(
68
- name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_files([images_path])}
69
- ),
70
- ]
71
-
72
- def _generate_examples(self, files):
73
- for i, file in enumerate(files):
74
- if os.path.basename(file).endswith(".jpg"):
75
- with open(file, "rb") as f:
76
- if b"JFIF" in f.peek(10):
77
- yield str(i), {
78
- "image": file,
79
- "labels": os.path.basename(os.path.dirname(file)).lower(),
80
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "A large set of images of cats and dogs. There are 1738 corrupted images that are dropped.", "citation": "@Inproceedings (Conference){asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization,\n author = {Elson, Jeremy and Douceur, John (JD) and Howell, Jon and Saul, Jared},\n title = {Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization},\n booktitle = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},\n year = {2007},\n month = {October},\n publisher = {Association for Computing Machinery, Inc.},\n url = {https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/},\n edition = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)},\n}\n", "homepage": "https://www.microsoft.com/en-us/download/details.aspx?id=54765", "license": "", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "labels": {"num_classes": 2, "names": ["cat", "dog"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "image", "output": "labels"}, "task_templates": [{"task": "image-classification", "image_column": "image", "label_column": "labels"}], "builder_name": "cats_vs_dogs", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4219400, "num_examples": 23410, "dataset_name": "cats_vs_dogs"}}, "download_checksums": {"https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_5340.zip": {"num_bytes": 824887076, "checksum": "b7974bd00a84a99921f36ee4403f089853777b5ae8d151c76a86e64900334af9"}}, "download_size": 824887076, "post_processing_size": null, "dataset_size": 4219400, "size_in_bytes": 829106476}}
 
 
default/train/0000.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2a40bc460fc9ac12a4a0edbe44476cbed5dd0829a8cbc08af9bcbbea5cc9620
3
+ size 330245704
default/train/0001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:568276cea0e7ee4173847ab3db33d3b64c3ec8fd061e2f3b336d0f48d791421e
3
+ size 391396716