Datasets:
File size: 3,226 Bytes
f61268f 622a6db 0bbb43a f61268f 3bab5ed 8260643 049b64f 7362994 3bab5ed 176bf54 ab14b79 3bab5ed 049b64f 176bf54 049b64f 176bf54 258f0c7 0bbb43a 176bf54 edbba0c 176bf54 0bbb43a 176bf54 edbba0c 0bbb43a 176bf54 0bbb43a 176bf54 3bab5ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: cc-by-sa-4.0
language:
- en
tags:
- music
size_categories:
- 1K<n<10K
---
# Google/Music-Capsの音声データをスペクトログラム化したデータ。
* Music Cpasとは:https://huggingface.co/datasets/google/MusicCaps
* GrayScaleじゃないほうもあるから見てね(⋈◍>◡<◍)。✧♡(<a href="https://huggingface.co/datasets/mickylan2367/ColorSpectrogram">これ</a>)
## 基本情報
* sampling_rate: int = 44100
* 20秒のwavファイル -> 1600×800のpngファイルへ変換
* librosaの規格により、画像の縦軸:(0-10000?Hz), 画像の横軸:(0-40秒)
## 使い方
### 0: データセットをダウンロード
```py
from datasets import load_dataset
data = load_dataset("mickylan2367/spectrogram")
data = data["train"]
```
### 1: データローダーへ
* こんな感じの関数で、データローダーにできます。
```py
from torchvision import transforms
from torch.utils.data import DataLoader
BATCH_SIZE = ??? # 自分で設定
IMAGE_SIZE = ???
TRAIN_SIZE = ??? # 訓練に使用したいデータセット数
TEST_SIZE = ??? # テストに使用したいデータセット数
def load_datasets():
data_transforms = [
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(), # Scales data into [0,1]
transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1]
]
data_transform = transforms.Compose(data_transforms)
data = load_dataset("mickylan2367/spectrogram")
data = data["train"]
train = data[slice(0, TRAIN_SIZE, None)]
test = data[slice(TRAIN_SIZE, TRAIN_SIZE + TEST_SIZE, 0)]
for idx in range(len(train["image"])):
train["image"][idx] = data_transform(train["image"][idx])
test["image"][idx] = data_transform(test["image"][idx])
train = Dataset.from_dict(train)
train = train.with_format("torch") # リスト型回避
test = Dataset.from_dict(train)
test = test.with_format("torch") # リスト型回避
# or
train_loader = DataLoader(train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = DataLoader(test, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
return train_loader, test_loader
```
## 参考資料とメモ
* (memo)ぶっちゃけグレースケールもカラーバージョンをtorchvision.transformのグレースケール変換すればいいだけかも?
* ダウンロードに使ったコードは<a href="https://colab.research.google.com/drive/1HmDorbxD5g6C2WDjLierUqbhecTdRvgA?usp=sharing">こちら</a>
* 参考:https://www.kaggle.com/code/osanseviero/musiccaps-explorer
* 仕組み:Kaggleの参考コードでwavファイルをダウンロードする->スペクトログラムつくりながらmetadata.jsonlに
```
{"filename":"spectrogram_*.png", "caption":"This is beautiful music"}
```
をなどと言ったjson列を書き込み、これをアップロードした
* Huggingfaceのデータビューアが動かなくなったら、一度GoogleColabでそのデータセットをダウンロードしてみることもおすすめ
意外とHuggingfaceがバグっているだけかも(実話(´;ω;`)) |