|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""\ |
|
This dataset gathers 728,321 biographies from Wikipedia. It aims at evaluating text generation |
|
algorithms. For each article, we provide the first paragraph and the infobox. |
|
""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/LebretGA16, |
|
author = {R{\'{e}}mi Lebret and |
|
David Grangier and |
|
Michael Auli}, |
|
title = {Generating Text from Structured Data with Application to the Biography |
|
Domain}, |
|
journal = {CoRR}, |
|
volume = {abs/1603.07771}, |
|
year = {2016}, |
|
url = {http://arxiv.org/abs/1603.07771}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1603.07771}, |
|
timestamp = {Mon, 13 Aug 2018 16:48:30 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/LebretGA16.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset gathers 728,321 biographies from wikipedia. It aims at evaluating text generation |
|
algorithms. For each article, we provide the first paragraph and the infobox (both tokenized). |
|
For each article, we extracted the first paragraph (text), the infobox (structured data). Each |
|
infobox is encoded as a list of (field name, field value) pairs. We used Stanford CoreNLP |
|
(http://stanfordnlp.github.io/CoreNLP/) to preprocess the data, i.e. we broke the text into |
|
sentences and tokenized both the text and the field values. The dataset was randomly split in |
|
three subsets train (80%), valid (10%), test (10%). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/DavidGrangier/wikipedia-biography-dataset" |
|
|
|
_LICENSE = "CC BY-SA 3.0" |
|
|
|
|
|
|
|
_URL = "https://drive.google.com/uc?export=download&id=1L7aoUXzHPzyzQ0ns4ApBbYepsjFOtXil" |
|
|
|
|
|
def _get_table(infobox_line): |
|
"""Converts the infobox into a one row table.""" |
|
cells = infobox_line.split("\t") |
|
|
|
cells = list(filter(lambda x: x.find("<none>") == -1, cells)) |
|
columns = set([cell[0 : cell.split(":")[0].rfind("_")] for cell in cells]) |
|
table = {col: dict() for col in columns} |
|
for cell in cells: |
|
delimiter_position_value = cell.find(":") |
|
column_index = cell[0:delimiter_position_value] |
|
value = cell[delimiter_position_value + 1 :] |
|
delimiter_column_index = column_index.rfind("_") |
|
column = column_index[0:delimiter_column_index] |
|
index = column_index[delimiter_column_index + 1 :] |
|
table[column][index] = value |
|
infobox_line_as_table = [] |
|
for column in table.keys(): |
|
row_value = " ".join([table[column][index] for index in sorted(table[column].keys())]) |
|
infobox_line_as_table.append( |
|
{ |
|
"column_header": column, |
|
"row_number": 1, |
|
"content": row_value, |
|
} |
|
) |
|
return infobox_line_as_table |
|
|
|
|
|
class WikiBio(datasets.GeneratorBasedBuilder): |
|
"""Infoboxes and first paragraph from Wikipedia biography pages.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"input_text": { |
|
"table": datasets.Sequence( |
|
{ |
|
"column_header": datasets.Value("string"), |
|
"row_number": datasets.Value("int16"), |
|
"content": datasets.Value("string"), |
|
} |
|
), |
|
"context": datasets.Value("string"), |
|
}, |
|
"target_text": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=("input_text", "target_text"), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URL |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
data_path = os.path.join(data_dir, "wikipedia-biography-dataset") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split("train"), |
|
gen_kwargs={ |
|
"id_file": os.path.join(data_path, "train", "train.id"), |
|
"infobox_file": os.path.join(data_path, "train", "train.box"), |
|
"nb_lines_file": os.path.join(data_path, "train", "train.nb"), |
|
"sentences_file": os.path.join(data_path, "train", "train.sent"), |
|
"article_title_file": os.path.join(data_path, "train", "train.title"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("test"), |
|
gen_kwargs={ |
|
"id_file": os.path.join(data_path, "test", "test.id"), |
|
"infobox_file": os.path.join(data_path, "test", "test.box"), |
|
"nb_lines_file": os.path.join(data_path, "test", "test.nb"), |
|
"sentences_file": os.path.join(data_path, "test", "test.sent"), |
|
"article_title_file": os.path.join(data_path, "test", "test.title"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("val"), |
|
gen_kwargs={ |
|
"id_file": os.path.join(data_path, "valid", "valid.id"), |
|
"infobox_file": os.path.join(data_path, "valid", "valid.box"), |
|
"nb_lines_file": os.path.join(data_path, "valid", "valid.nb"), |
|
"sentences_file": os.path.join(data_path, "valid", "valid.sent"), |
|
"article_title_file": os.path.join(data_path, "valid", "valid.title"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, id_file, infobox_file, nb_lines_file, sentences_file, article_title_file): |
|
""" Yields examples.""" |
|
with open(id_file, "r", encoding="utf-8") as id_src, open( |
|
infobox_file, "r", encoding="utf-8" |
|
) as infobox_src, open(nb_lines_file, "r", encoding="utf-8") as nb_lines_src, open( |
|
sentences_file, "r", encoding="utf-8" |
|
) as sentences_src, open( |
|
article_title_file, "r", encoding="utf-8" |
|
) as article_title_src: |
|
for id_, infobox, nb_lines, article_title in zip(id_src, infobox_src, nb_lines_src, article_title_src): |
|
target_text = [] |
|
for _ in range(int(nb_lines)): |
|
target_text.append(sentences_src.readline()) |
|
yield id_, { |
|
"input_text": {"table": _get_table(infobox), "context": article_title}, |
|
"target_text": "".join(target_text), |
|
} |
|
|