File size: 7,378 Bytes
a73b2ed a49c3a2 a73b2ed a49c3a2 a73b2ed a49c3a2 a73b2ed 997454c a73b2ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""\
This dataset gathers 728,321 biographies from Wikipedia. It aims at evaluating text generation
algorithms. For each article, we provide the first paragraph and the infobox.
"""
import os
import datasets
_CITATION = """\
@article{DBLP:journals/corr/LebretGA16,
author = {R{\'{e}}mi Lebret and
David Grangier and
Michael Auli},
title = {Generating Text from Structured Data with Application to the Biography
Domain},
journal = {CoRR},
volume = {abs/1603.07771},
year = {2016},
url = {http://arxiv.org/abs/1603.07771},
archivePrefix = {arXiv},
eprint = {1603.07771},
timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},
biburl = {https://dblp.org/rec/journals/corr/LebretGA16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
This dataset gathers 728,321 biographies from wikipedia. It aims at evaluating text generation
algorithms. For each article, we provide the first paragraph and the infobox (both tokenized).
For each article, we extracted the first paragraph (text), the infobox (structured data). Each
infobox is encoded as a list of (field name, field value) pairs. We used Stanford CoreNLP
(http://stanfordnlp.github.io/CoreNLP/) to preprocess the data, i.e. we broke the text into
sentences and tokenized both the text and the field values. The dataset was randomly split in
three subsets train (80%), valid (10%), test (10%).
"""
_HOMEPAGE = "https://github.com/DavidGrangier/wikipedia-biography-dataset"
_LICENSE = "CC BY-SA 3.0"
_URL = "https://huggingface.co/datasets/wiki_bio/resolve/main/data/wikipedia-biography-dataset.zip"
def _get_table(infobox_line):
"""Converts the infobox into a one row table."""
cells = infobox_line.split("\t")
# remove empty cells
cells = list(filter(lambda x: x.find("<none>") == -1, cells))
columns = set([cell[0 : cell.split(":")[0].rfind("_")] for cell in cells])
table = {col: dict() for col in columns}
for cell in cells:
delimiter_position_value = cell.find(":")
column_index = cell[0:delimiter_position_value]
value = cell[delimiter_position_value + 1 :]
delimiter_column_index = column_index.rfind("_")
column = column_index[0:delimiter_column_index]
index = column_index[delimiter_column_index + 1 :]
table[column][index] = value
infobox_line_as_table = []
for column in table.keys():
row_value = " ".join([table[column][index] for index in sorted(table[column].keys())])
infobox_line_as_table.append(
{
"column_header": column,
"row_number": 1,
"content": row_value,
}
)
return infobox_line_as_table
class WikiBio(datasets.GeneratorBasedBuilder):
"""Infoboxes and first paragraph from Wikipedia biography pages."""
VERSION = datasets.Version("1.2.0")
def _info(self):
features = datasets.Features(
{
"input_text": {
"table": datasets.Sequence(
{
"column_header": datasets.Value("string"),
"row_number": datasets.Value("int16"),
"content": datasets.Value("string"),
}
),
"context": datasets.Value("string"),
},
"target_text": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("input_text", "target_text"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
data_path = os.path.join(data_dir, "wikipedia-biography-dataset")
return [
datasets.SplitGenerator(
name=datasets.Split("train"),
gen_kwargs={
"id_file": os.path.join(data_path, "train", "train.id"),
"infobox_file": os.path.join(data_path, "train", "train.box"),
"nb_lines_file": os.path.join(data_path, "train", "train.nb"),
"sentences_file": os.path.join(data_path, "train", "train.sent"),
"article_title_file": os.path.join(data_path, "train", "train.title"),
},
),
datasets.SplitGenerator(
name=datasets.Split("test"),
gen_kwargs={
"id_file": os.path.join(data_path, "test", "test.id"),
"infobox_file": os.path.join(data_path, "test", "test.box"),
"nb_lines_file": os.path.join(data_path, "test", "test.nb"),
"sentences_file": os.path.join(data_path, "test", "test.sent"),
"article_title_file": os.path.join(data_path, "test", "test.title"),
},
),
datasets.SplitGenerator(
name=datasets.Split("val"),
gen_kwargs={
"id_file": os.path.join(data_path, "valid", "valid.id"),
"infobox_file": os.path.join(data_path, "valid", "valid.box"),
"nb_lines_file": os.path.join(data_path, "valid", "valid.nb"),
"sentences_file": os.path.join(data_path, "valid", "valid.sent"),
"article_title_file": os.path.join(data_path, "valid", "valid.title"),
},
),
]
def _generate_examples(self, id_file, infobox_file, nb_lines_file, sentences_file, article_title_file):
"""Yields examples."""
with open(id_file, "r", encoding="utf-8") as id_src, open(
infobox_file, "r", encoding="utf-8"
) as infobox_src, open(nb_lines_file, "r", encoding="utf-8") as nb_lines_src, open(
sentences_file, "r", encoding="utf-8"
) as sentences_src, open(
article_title_file, "r", encoding="utf-8"
) as article_title_src:
for id_, infobox, nb_lines, article_title in zip(id_src, infobox_src, nb_lines_src, article_title_src):
target_text = []
for _ in range(int(nb_lines)):
target_text.append(sentences_src.readline())
yield id_, {
"input_text": {"table": _get_table(infobox), "context": article_title},
"target_text": "".join(target_text),
}
|