Datasets:

Languages:
English
ArXiv:
License:
File size: 7,378 Bytes
a73b2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49c3a2
a73b2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49c3a2
a73b2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49c3a2
a73b2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997454c
a73b2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""\
This dataset gathers 728,321 biographies from Wikipedia. It aims at evaluating text generation
algorithms. For each article, we provide the first paragraph and the infobox.
"""


import os

import datasets


_CITATION = """\
@article{DBLP:journals/corr/LebretGA16,
  author    = {R{\'{e}}mi Lebret and
               David Grangier and
               Michael Auli},
  title     = {Generating Text from Structured Data with Application to the Biography
               Domain},
  journal   = {CoRR},
  volume    = {abs/1603.07771},
  year      = {2016},
  url       = {http://arxiv.org/abs/1603.07771},
  archivePrefix = {arXiv},
  eprint    = {1603.07771},
  timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/LebretGA16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """\
This dataset gathers 728,321 biographies from wikipedia. It aims at evaluating text generation
algorithms. For each article, we provide the first paragraph and the infobox (both tokenized).
For each article, we extracted the first paragraph (text), the infobox (structured data). Each
infobox is encoded as a list of (field name, field value) pairs. We used Stanford CoreNLP
(http://stanfordnlp.github.io/CoreNLP/) to preprocess the data, i.e. we broke the text into
sentences and tokenized both the text and the field values. The dataset was randomly split in
three subsets train (80%), valid (10%), test (10%).
"""

_HOMEPAGE = "https://github.com/DavidGrangier/wikipedia-biography-dataset"

_LICENSE = "CC BY-SA 3.0"

_URL = "https://huggingface.co/datasets/wiki_bio/resolve/main/data/wikipedia-biography-dataset.zip"


def _get_table(infobox_line):
    """Converts the infobox into a one row table."""
    cells = infobox_line.split("\t")
    # remove empty cells
    cells = list(filter(lambda x: x.find("<none>") == -1, cells))
    columns = set([cell[0 : cell.split(":")[0].rfind("_")] for cell in cells])
    table = {col: dict() for col in columns}
    for cell in cells:
        delimiter_position_value = cell.find(":")
        column_index = cell[0:delimiter_position_value]
        value = cell[delimiter_position_value + 1 :]
        delimiter_column_index = column_index.rfind("_")
        column = column_index[0:delimiter_column_index]
        index = column_index[delimiter_column_index + 1 :]
        table[column][index] = value
    infobox_line_as_table = []
    for column in table.keys():
        row_value = " ".join([table[column][index] for index in sorted(table[column].keys())])
        infobox_line_as_table.append(
            {
                "column_header": column,
                "row_number": 1,
                "content": row_value,
            }
        )
    return infobox_line_as_table


class WikiBio(datasets.GeneratorBasedBuilder):
    """Infoboxes and first paragraph from Wikipedia biography pages."""

    VERSION = datasets.Version("1.2.0")

    def _info(self):
        features = datasets.Features(
            {
                "input_text": {
                    "table": datasets.Sequence(
                        {
                            "column_header": datasets.Value("string"),
                            "row_number": datasets.Value("int16"),
                            "content": datasets.Value("string"),
                        }
                    ),
                    "context": datasets.Value("string"),
                },
                "target_text": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=("input_text", "target_text"),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URL)
        data_path = os.path.join(data_dir, "wikipedia-biography-dataset")
        return [
            datasets.SplitGenerator(
                name=datasets.Split("train"),
                gen_kwargs={
                    "id_file": os.path.join(data_path, "train", "train.id"),
                    "infobox_file": os.path.join(data_path, "train", "train.box"),
                    "nb_lines_file": os.path.join(data_path, "train", "train.nb"),
                    "sentences_file": os.path.join(data_path, "train", "train.sent"),
                    "article_title_file": os.path.join(data_path, "train", "train.title"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test"),
                gen_kwargs={
                    "id_file": os.path.join(data_path, "test", "test.id"),
                    "infobox_file": os.path.join(data_path, "test", "test.box"),
                    "nb_lines_file": os.path.join(data_path, "test", "test.nb"),
                    "sentences_file": os.path.join(data_path, "test", "test.sent"),
                    "article_title_file": os.path.join(data_path, "test", "test.title"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split("val"),
                gen_kwargs={
                    "id_file": os.path.join(data_path, "valid", "valid.id"),
                    "infobox_file": os.path.join(data_path, "valid", "valid.box"),
                    "nb_lines_file": os.path.join(data_path, "valid", "valid.nb"),
                    "sentences_file": os.path.join(data_path, "valid", "valid.sent"),
                    "article_title_file": os.path.join(data_path, "valid", "valid.title"),
                },
            ),
        ]

    def _generate_examples(self, id_file, infobox_file, nb_lines_file, sentences_file, article_title_file):
        """Yields examples."""
        with open(id_file, "r", encoding="utf-8") as id_src, open(
            infobox_file, "r", encoding="utf-8"
        ) as infobox_src, open(nb_lines_file, "r", encoding="utf-8") as nb_lines_src, open(
            sentences_file, "r", encoding="utf-8"
        ) as sentences_src, open(
            article_title_file, "r", encoding="utf-8"
        ) as article_title_src:
            for id_, infobox, nb_lines, article_title in zip(id_src, infobox_src, nb_lines_src, article_title_src):
                target_text = []
                for _ in range(int(nb_lines)):
                    target_text.append(sentences_src.readline())
                yield id_, {
                    "input_text": {"table": _get_table(infobox), "context": article_title},
                    "target_text": "".join(target_text),
                }