text
stringlengths 0
1.96k
|
---|
I feel that more tools should have been used to further support or push the results ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
e) The Actor-Critic framework, coupled with a conditional query learning algorithm, is unfortunately unintelligible due to the fact that many notations are left unspecified ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
It has the potential to improve pathology and cancer diagnosis by making it simpler and quicker The results of this work look visually convincing ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
In fact, if real-world datasets end up being like the asymmetric dataset, then the results of this paper would actually indicate the *opposite* of the above statement ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The authors give some concrete examples in Section 6.2 for these bounds ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
It contradicts with the authors other explanation ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The method part is well-written and easy to understand ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Bluntly: surgical parts are predominantly red, non-surgical parts anything and blue/green. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
b) In the related work section, very little is said about Bin Packing Problems ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
MAAC outperforms baselines on TC, but not on RT. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
For instance, while the heatmaps in Figure 3 provide visual evidence for their claims (except see my comments below), the work could have benefitted from a quantification of this evidence ['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
In Table 1, the proposed method tuned M as a hyperparameter. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The second module is responsible for mapping goals from this embedding space to control policies. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
MNIST, in particular, is a well studied dataset that many readers will be able to easily interpret. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
This paper generalizes basic policy gradient methods by replacing the original Gaussian or Gaussian mixture policy with a normalizing flow policy, which is defined by a sequence of invertible transformations from a base policy. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The approach doubles down on the variational approach with variational approximations for both the positive phase and negative phase of the log likelihood objective function. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Define the model more explicitly ['arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Have you tried baselines like these? ['non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Please provide variance measures on your results (within model configuration, across scene examples). ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The introduction and description of the state of the art, in addition to the main limitations of popular algorithms is very clear and interesting to read ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Plenty of works combine autoencoders with LSTMs ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
This work proposes a variant of the column network based on the injection of human guidance. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
In Eq (2) what is d_i ['non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg'] paper quality |
The paper should have a single focus ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Some of these should serve as baselines ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
I believe this paper is addressing questions that many of the workshop attendees will find interesting ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
When used on another dataset they do not show gains anymore. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
But you state it as if those measures are actually correct, which you didnt show yet ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
I have just a few comments below: ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
other comments: - The authors use 2D images to represent leaflet shapes, I'm concerned whether 2D photograph is precise enough ['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Better training error? ['non', 'non', 'non', 'non'] paper quality |
They seem to work in different dimensions of the signals. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
6- I suggest the authors to use train validation and test split or a cross-validation, since the results presented here are from a validation set without a test set ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
I'd say a fairly 'standard' work for the setting ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
How would this affect the results? ['non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
3) the small improvement of the expanded network can be given by the different initialization. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Additionally, it is very much not clear why someone, for example, would select the approach of this paper in comparison to popular paradigms like Option-Critic and Feudal Networks ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Its more a series of statements than a cleverly woven argument ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Equation (1) and (2) are extremely clear ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Noble, A. Zisserman, In MICCAI 2015 Workshop. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
It's compared to an earlier method which uses a 3D network and time-point concatenation and reports improvement in Dice scores, false positive rates and true positive rate. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
This paper raises an important point about empirical claims without properly tuned baselines, when comparing model-based to model-free methods, identifying the amount of computation as a hyperparameter to tune for fairer comparisons. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Why do the authors reuse the input of a temporal block to its output and how does this influence the performance ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The authors claim the proposed method has better generalization performance. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The effect of each proposed technique is appropriately evaluated ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
"Predicting the confidence map with fully convolutional networks was initially done by : ""Microscopy Cell Counting with Fully Convolutional Regression Networks"", W. Xie, J.A." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The paper initially states that this distance function is computed from learned embeddings of human demonstrations, however these are presumably instructions rather than demonstrations ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
I have several issues with this work ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The approach is clearly explained and the results presented are sufficient to give merit to the idea ['arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Then, in Figure 2, human normalized scores are reported for varying amounts of experience for the variants of Rainbow, and compared against SiMPLe with 100k interactions, with the claim that the authors couldn't run the method for longer experiences. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The methodological novelty seems insignificant ['arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The method in [2] should be included in the comparison of vessel segmentation algorithms ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
I dont see how the current work adds more clarity to this research direction ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Including the training time for the baselines, as well as the method proposed by the authors, will help settle the point. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
How the proposed method can have better results. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The paper is written very well , the implementation details are provided to help reproducing the results ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
They compare their method with two state of the art deep learning methods and illustrate superior performance on NRMSE, PSNR, SSIM and R2 metrics. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Taking this into account, I would suggest the authors to incorporate at least one paragraph in Related works (Section 2) describing the current existing approaches to do that. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Pros: This paper presents the first study of tree search for optimal actions in the presence of pretrained value and policy networks ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The authors show that the AF-Net is more robust compared to the U-Net and M-Net for AFV measurement. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
"Often new methods are manually ""overfitted"" to one dataset." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Previously, all studies of this sort had to be done with small-scale classifiers and simplistic datasets such as Gaussians. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
It is not clear whether such assumptions hold for practical problems ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
But the higher performance is not significant ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The experiments shown in Table 1 compare several different network settings. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Other than that, the different approaches tested all work well in different tasks ['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
I think this joint training might result in even better outcomes. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
It is unclear what is the default batchsize for Imagenet ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
In the first paragraph of Section 6.2, there is a typo : V*=V_{l*}=\eta should be V*-V_{l*}=\eta ? ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
While for criterion 1 you define overfitting as 'above the diagonal line and underfitting as below the line, which is at least measurable depending on sample density of the randomization, such criteria are missing for C2 and C3 ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
On learning to refer to things based on their discriminative properties. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
I am positive with respect to acceptance of this paper ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The authors claim the formalization of the problem to be one of their contributions. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
2- Two step approach combining despeckling and generative networks are reasonable for the task ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
All architectures listed in Table 1 should be stated clearly in experiments section not only in method section . ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non'] paper quality |
The complexity bound in Theorem 1 is hard to understand ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
This paper presents a black-box style learning algorithm for Markov Random Fields (MRF). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The contribution of the two datasets (the symmetric and asymetric CelebA) is, in my opinion, an extremely important contribution in studying adversarial robustness and on their own these datasets warrant further study ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Authors provide 3 baselines: 1) no communication, but IR 2) no communication, no IR 3) global communication, no IR (commNet) I think having a baseline that has global communication with IR can show the effect of selective communication better. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
"The dataset is an extension of CLEVR using simple motions of primitive 3D objects to produce videos of primitive actions (e.g. pick and place a cube), compositional actions (e.g. ""cone is rotated during the sliding of the sphere""), and finally a 3D object localization tasks (i.e. where is the ""snitch"" object at the end of the video)." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Springer, Cham, 2016. ['non', 'non', 'non', 'non', 'non', 'non'] paper quality |
To deal with this issue, the authors argue (in Lemma 1) that the gradient of their approximate objective is at least in the same direction as the ELBO (lower bound) objective. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
The improvement on test errors does not look significant ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
This doesn't mean that cycle-GAN type of techniques are not suited for medical imaging since they might wipe out their diagnostic value, but it means that every study around this topic needs to prove that the diagnostic value is indeed kept! ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Please provide some extra information on how it is calculated. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Pros: 1- If this approach is accepted by the community, it could remove the need for additional training to the pathologists ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Maybe you meant the size of the test set? ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
In the exploration step, architectures are sampled by using genetic operators such as the crossover and the mutation. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
A radical ablation study is clearly missing here ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
More detail for this application of AdVIL would be nice ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
Note that the 2D Knapsack problem with rotations admits a 3/2 + \epsilon - approximation algorithm (Galvez et. al., FOCS 2017). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
CNN vs Linear SVM: I am confused about why we would expect a CNN to be able to learn the Bayes-optimal decision boundary but not the Linear SVM ['non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The largest batch considered is 64*32, which is relatively small ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The adversarial loss allows to leverage complementary data sets that do not have all the regions of interest segmented. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Authors could comment on how their model could be incorporated into (e.g. deep) segmentation approaches, because I do not see an immediate way to do that without requiring the (precise) image-based localization of mandible landmarks in a test volume. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Foremost, the presented criteria are actually not real criteria (expect maybe C1) but rather general guidelines to visually inspect 'accuracy over randomization curves ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The authors argue convincingly that an interactive and grounded evaluation environment helps us better measure how well NLG/NLU agents actually understand and use their language rather than evaluating against arbitrary ground-truth examples of what humans say, we can evaluate the objective end-to-end performance of a system in a well-specified nonlinguistic task. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Experiments are convincing ['arg', 'arg', 'arg'] paper quality |
For example, normalizing flows are defined in Section 4, and then it is directly claimed that normalizing flows can be applied to policy optimization, without giving details on how it is actually applied, e.g., what is the objective function ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality |
The difference is that the proposed method learns a multi-channel representation and uses the attention technique to aggregate the multi-channel representation. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.