File size: 2,767 Bytes
2d52bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab829b6
 
 
 
 
 
 
 
 
 
 
2d52bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab829b6
2d52bcc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
task_categories:
- text-classification
language:
- en
tags:
- natural disasters
- tweets
- classification
- catastrophic events
pretty_name: Natural Disasters from Social Media
size_categories:
- 100K<n<1M
annotations_creators:
  - crowdsourced
  - expert-generated
source_datasets:
  - "Kaggle 1 - jannesklaas/disasters-on-social-media"
  - "Kaggle 2 - vstepanenko/disaster-tweets"
  - "Kaggle 3 - sidharth178/disaster-response-messages"
  - "Zahra et al. - doi: 10.1016/j.ipm.2019.102107"
  - "CrisisMMD - arxiv: 1805.00713"
  - "Alam et al. - arxiv: 1805.05151"
  - "CrisisLexT26 - doi: 10.1145/2675133.2675242"
  - "Imran et al. - aclanthology: L16-1259"
  - "CrisisLexT6 - doi: 10.1609/icwsm.v8i1.14538"
  - "HumAID - doi: 10.1609/icwsm.v15i1.18116"
  - "CrisisBench - doi: 10.1609/icwsm.v15i1.18115"
dataset_info:
  features:
    - name: text
      dtype: text
    - name: target
      dtype: int32
    - name: SOURCE_FILE
      dtype: text
    - name: tweet_id
      dtype: text
    - name: filename
      dtype: text
    - name: event_type
      dtype: text
    - name: event_type_detail
      dtype: text
    - name: label
      dtype: text
  splits:
    - name: train
      num_bytes: 39817704
      num_examples: 169109
    - name: val
      num_bytes: 4977163
      num_examples: 21139
    - name: test
      num_bytes: 4981112
      num_examples: 21139
  dataset_size: 49775824
---

Dataset created for Master's thesis "Detection of Catastrophic Events from Social Media" at the Slovak Technical University Faculty of Informatics.

Contains posts from social media that are split into two categories:
- Informative - related and informative in regards to natural disasters
- Non-Informative - unrelated to natural disasters

Other metadata include event type, source dataset etc.

Source Datasets:

  - Kaggle 1 - [URL](https://www.kaggle.com/datasets/jannesklaas/disasters-on-social-media) - 951
  - Kaggle 2 - [URL](https://www.kaggle.com/datasets/vstepanenko/disaster-tweets) - 579
  - Kaggle 3 - [URL](https://www.kaggle.com/datasets/sidharth178/disaster-response-messages) - 3782
  - Zahra et al. - [URL](https://doi.org/10.1016/j.ipm.2019.102107) - 6494
  - CrisisMMD - [URL](https://arxiv.org/abs/1805.00713) - 11043
  - Alam et al. - [URL](https://arxiv.org/abs/1805.05151) - 11133
  - CrisisLexT26 - [URL](https://doi.org/10.1145/2675133.2675242) - 14998
  - Imran et al. - [URL](https://aclanthology.org/L16-1259) - 16549
  - CrisisLexT6 - [URL](https://doi.org/10.1609/icwsm.v8i1.14538) - 22672
  - HumAID - [URL](https://doi.org/10.1609/icwsm.v15i1.18116) - 42837
  - CrisisBench - [URL](https://doi.org/10.1609/icwsm.v15i1.18115) - 31158
  - ArchiveTeam - [URL](https://archive.org/details/twitterstream) - 49191 (Not informative tweets)