|
import datasets |
|
import pandas as pd |
|
|
|
|
|
_MBIB_DESCRIPTION = 'bla bla' |
|
|
|
class MBIBConfig(datasets.BuilderConfig): |
|
def __init__(self,data_dir,**kwargs): |
|
super(MBIBConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.data_dir = data_dir |
|
|
|
|
|
class MBIB(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
MBIBConfig(name="cognitive-bias",data_dir="mbib-aggregated/cognitive-bias.csv"), |
|
MBIBConfig(name="fake-news",data_dir="mbib-aggregated/fake-news.csv"), |
|
MBIBConfig(name="gender-bias",data_dir="mbib-aggregated/gender-bias.csv"), |
|
MBIBConfig(name="hate-speech",data_dir="mbib-aggregated/hate-speech.csv"), |
|
MBIBConfig(name="linguistic-bias",data_dir="mbib-aggregated/linguistic-bias.csv"), |
|
MBIBConfig(name="political-bias",data_dir="mbib-aggregated/political-bias.csv"), |
|
MBIBConfig(name="racial-bias",data_dir="mbib-aggregated/racial-bias.csv"), |
|
MBIBConfig(name="text-level-bias",data_dir="mbib-aggregated/text-level-bias.csv")] |
|
|
|
def _info(self): |
|
features=datasets.Features( |
|
{"text":datasets.Value("string"), |
|
"label":datasets.Value("int32")} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_MBIB_DESCRIPTION, |
|
features=features |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_file = dl_manager.download(self.config.data_dir) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"data_dir": data_file})] |
|
|
|
|
|
def _generate_examples(self, data_dir): |
|
df = pd.read_csv(data_dir)[['text','label']] |
|
|
|
for i, row in df.iterrows(): |
|
yield i, {"text":row['text'],"label":row['label']} |