Datasets:
File size: 4,218 Bytes
00276cc 8f32db4 8ca70f1 21bfd1d 8f32db4 307039d 8f32db4 307039d 8f32db4 307039d 8f32db4 307039d 8f32db4 307039d 8f32db4 307039d 8f32db4 307039d 8f32db4 307039d 8f32db4 307039d 8f32db4 9734972 849612e 9734972 f72586c ffa2879 f72586c ffa2879 9734972 849612e 142c621 849612e 9734972 f72586c 9734972 f72586c 9734972 ffa2879 9734972 ffa2879 9734972 ffa2879 9734972 ffa2879 9734972 ffa2879 9734972 849612e 9734972 3f798df 9734972 0c9d99b 21bfd1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: cc-by-nc-nd-4.0
task_categories:
- text-classification
language:
- en
tags:
- media
- mediabias
- media-bias
- media bias
size_categories:
- 1M<n<10M
dataset_info:
config_name: plain_text
splits:
- name: cognitive_bias
- name: fake_news
- name: gender_bias
- name: hate_speech
- name: linguistic_bias
- name: political_bias
- name: racial_bias
- name: text_level_bias
configs:
- config_name: default
data_files:
- split: cognitive_bias
path: mbib-aggregated/cognitive-bias.csv
- split: fake_news
path: mbib-aggregated/fake-news.csv
- split: gender_bias
path: mbib-aggregated/gender-bias.csv
- split: hate_speech
path: mbib-aggregated/hate-speech.csv
- split: linguistic_bias
path: mbib-aggregated/linguistic-bias.csv
- split: political_bias
path: mbib-aggregated/political-bias.csv
- split: racial_bias
path: mbib-aggregated/racial-bias.csv
- split: text_level_bias
path: mbib-aggregated/text-level-bias.csv
---
# Dataset Card for Media-Bias-Identification-Benchmark
## Table of Contents
- [Dataset Card for Media-Bias-Identification-Benchmark](#dataset-card-for-mbib)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Tasks and Information](#tasks-and-information)
- [Baseline](#baseline)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [cognitive-bias](#cognitive-bias)
- [Data Fields](#data-fields)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Repository:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Paper:** https://doi.org/10.1145/3539618.3591882
- **Point of Contact:** [Martin Wessel](mailto:[email protected])
### Baseline
<table>
<tr><td><b>Task</b></td><td><b>Model</b></td><td><b>Micro F1</b></td><td><b>Macro F1</b></td></tr>
<td>cognitive-bias</td> <td> ConvBERT/ConvBERT</td> <td>0.7126</td> <td> 0.7664</td></tr>
<td>fake-news</td> <td>Bart/RoBERTa-T</td> <td>0.6811</td> <td> 0.7533</td> </tr>
<td>gender-bias</td> <td> RoBERTa-T/ELECTRA</td> <td>0.8334</td> <td>0.8211</td> </tr>
<td>hate-speech</td> <td>RoBERTA-T/Bart</td> <td>0.8897</td> <td> 0.7310</td> </tr>
<td>linguistic-bias</td> <td> ConvBERT/Bart </td> <td> 0.7044 </td> <td> 0.4995 </td> </tr>
<td>political-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7041 </td> <td> 0.7110 </td> </tr>
<td>racial-bias</td> <td> ConvBERT/ELECTRA </td> <td> 0.8772 </td> <td> 0.6170 </td> </tr>
<td>text-leve-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7697</td> <td> 0.7532 </td> </tr>
</table>
### Languages
All datasets are in English
## Dataset Structure
### Data Instances
#### cognitive-bias
An example of one training instance looks as follows.
```json
{
"text": "A defense bill includes language that would require military hospitals to provide abortions on demand",
"label": 1
}
```
### Data Fields
- `text`: a sentence from various sources (eg., news articles, twitter, other social media).
- `label`: binary indicator of bias (0 = unbiased, 1 = biased)
## Considerations for Using the Data
### Social Impact of Dataset
We believe that MBIB offers a new common ground
for research in the domain, especially given the rising amount of
(research) attention directed toward media bias
### Citation Information
```
@inproceedings{
title = {Introducing MBIB - the first Media Bias Identification Benchmark Task and Dataset Collection},
author = {Wessel, Martin and Spinde, Timo and Horych, Tomáš and Ruas, Terry and Aizawa, Akiko and Gipp, Bela},
year = {2023},
note = {[in review]}
}
``` |