File size: 7,487 Bytes
7067d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
491cbeb
7067d3a
 
 
 
 
 
 
491cbeb
 
 
 
7067d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06ca1b1
7067d3a
 
ffadbb9
491cbeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7067d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
from itertools import combinations
import os

import datasets


_DESCRIPTION = """\
This is a collection of translated sentences from Tatoeba
397 languages, 4,344 bitexts
total number of files: 1,572
total number of tokens: 86.26M
total number of sentence fragments: 11.80M
"""
_HOMEPAGE_URL = "http://opus.nlpl.eu/Tatoeba.php"
_CITATION = """\
@InProceedings{TIEDEMANN12.463,
  author = {J{\"o}rg}rg Tiedemann},
  title = {Parallel Data, Tools and Interfaces in OPUS},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Ugur Dogan and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
 }
"""

_VERSION = "2023.04.12"  # "2021.7.22"
_DATE = "v" + "-".join(s.zfill(2) for s in _VERSION.split("."))
_BASE_NAME = "Tatoeba.{}.{}"
_BASE_URL = "https://opus.nlpl.eu/download.php?f=Tatoeba/{}/moses/{}-{}.txt.zip"
_LANGUAGES = ["ab", "acm", "ady", "af", "afb", "afh", "aii", "ain", "ajp", "akl",
              "aln", "alt", "am", "an", "ang", "aoz", "apc", "ar", "arq", "ary",
              "arz", "as", "ast", "av", "avk", "awa", "ayl", "az", "ba", "bal",
              "ban", "bar", "be", "ber", "bg", "bho", "bjn", "bm", "bn", "bo",
              "bom", "br", "brx", "bs", "bua", "bvy", "bzt", "ca", "cay", "cbk",
              "ce", "ceb", "ch", "chg", "chn", "cho", "chr", "cjy", "ckb", "ckt",
              "cmn", "co", "cpi", "crh", "crk", "crs", "cs", "csb", "cv", "cy",
              "cycl", "da", "de", "diq", "dng", "drt", "dsb", "dtp", "dv", "dws",
              "ee", "egl", "el", "emx", "en", "enm", "eo", "es", "et", "eu", "evn",
              "ext", "fi", "fj", "fkv", "fo", "fr", "frm", "fro", "frr", "fuc",
              "fur", "fuv", "fy", "ga", "gag", "gan", "gbm", "gcf", "gd", "gil",
              "gl", "gn", "gom", "gos", "got", "grc", "gsw", "gu", "guc", "gv",
              "ha", "hak", "haw", "hbo", "he", "hi", "hif", "hil", "hnj", "hoc",
              "hr", "hrx", "hsb", "hsn", "ht", "hu", "hy", "ia", "iba", "id",
              "ie", "ig", "igs", "ii", "ike", "ilo", "io", "is", "it", "izh",
              "ja", "jam", "jbo", "jdt", "jpa", "jv", "ka", "kaa", "kab", "kam",
              "kbd", "kek", "kha", "kiu", "kjh", "kk", "kl", "klj", "km", "kmr",
              "kn", "knc", "ko", "koi", "kpv", "krc", "krl", "ksh", "ku", "kum",
              "kw", "kxi", "ky", "kzj", "la", "laa", "lad", "lb", "ldn", "lfn",
              "lg", "li", "lij", "liv", "lkt", "lld", "lmo", "ln", "lo", "lou",
              "lt", "ltg", "lut", "lv", "lzh", "lzz", "mad", "mai", "max", "mdf",
              "mfa", "mfe", "mg", "mgm", "mh", "mhr", "mi", "mic", "mik", "min",
              "mk", "ml", "mn", "mnc", "mni", "mnr", "mnw", "moh", "mr", "mt",
              "mus", "mvv", "mwl", "mww", "my", "myv", "na", "nah", "nan", "nap",
              "nb", "nch", "nds", "ngt", "ngu", "niu", "nl", "nlv", "nn", "nnb",
              "nog", "non", "nov", "npi", "nst", "nus", "nv", "ny", "nys", "oar",
              "oc", "ofs", "oj", "ood", "or", "orv", "os", "osp", "ota", "otk",
              "pa", "pag", "pal", "pam", "pap", "pau", "pcd", "pdc", "pes", "phn",
              "pi", "pl", "pms", "pnb", "ppl", "prg", "ps", "pt", "qu", "quc",
              "qxq", "qya", "rap", "rhg", "rif", "rm", "rn", "ro", "rom", "ru",
              "rue", "rw", "ryu", "sa", "sah", "sat", "sc", "scn", "sco", "sd",
              "sdh", "se", "sg", "sgs", "shi", "shs", "shy", "si", "sjn", "skr",
              "sl", "sm", "sma", "sn", "so", "sq", "sr", "srn", "stq", "su",
              "sux", "sv", "swc", "swg", "swh", "syc", "syl", "szl", "ta", "te",
              "tet", "tg", "th", "thv", "ti", "tig", "tk", "tkl", "tl", "tlh",
              "tly", "tmr", "tmw", "tn", "to", "toi", "tok", "toki", "tpi", "tpw",
              "tr", "ts", "tt", "tts", "tvl", "ty", "tyv", "tzl", "udm", "ug",
              "uk", "umb", "ur", "uz", "vec", "vep", "vi", "vo", "vro", "wa",
              "war", "wo", "wuu", "xal", "xh", "xmf", "xqa", "yi", "yo", "yue",
              "zea", "zgh", "zlm", "zsm", "zu", "zza"]
_LANGUAGE_PAIRS = list(combinations(_LANGUAGES, 2))


class TatoebaConfig(datasets.BuilderConfig):
    def __init__(self, *args, lang1=None, lang2=None, date=_DATE, **kwargs):
        super().__init__(
            *args,
            name=f"{lang1}-{lang2}",
            **kwargs,
        )
        self.lang1 = lang1
        self.lang2 = lang2
        self.date = date


class Tatoeba(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        TatoebaConfig(
            lang1=lang1,
            lang2=lang2,
            description=f"Translating {lang1} to {lang2} or vice versa",
            version=datasets.Version(_VERSION),
        )
        for lang1, lang2 in _LANGUAGE_PAIRS
    ]
    BUILDER_CONFIG_CLASS = TatoebaConfig

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
                },
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        def _base_url(lang1, lang2, date):
            return _BASE_URL.format(date, lang1, lang2)

        download_url = _base_url(self.config.lang1, self.config.lang2, self.config.date)
        path = dl_manager.download_and_extract(download_url)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"datapath": path},
            )
        ]

    def _generate_examples(self, datapath):
        l1, l2 = self.config.lang1, self.config.lang2
        folder = l1 + "-" + l2
        l1_file = _BASE_NAME.format(folder, l1)
        l2_file = _BASE_NAME.format(folder, l2)
        l1_path = os.path.join(datapath, l1_file)
        l2_path = os.path.join(datapath, l2_file)
        with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
            for sentence_counter, (x, y) in enumerate(zip(f1, f2)):
                x = x.strip()
                y = y.strip()
                result = (
                    sentence_counter,
                    {
                        "id": str(sentence_counter),
                        "translation": {l1: x, l2: y},
                    },
                )
                yield result