|
|
|
|
|
|
|
|
|
"""The Kyoto Free Translation Task (KFTT) Dataset for Japanese-English machine translation.""" |
|
|
|
|
|
import collections |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The Kyoto Free Translation Task is a task for Japanese-English translation that focuses |
|
on Wikipedia articles related to Kyoto. The data used was originally prepared by the |
|
National Institute for Information and Communication Technology (NICT) and released as |
|
the Japanese-English Bilingual Corpus of Wikipedia's Kyoto Articles (we are simply using |
|
the data, NICT does not specifically endorse or sponsor this task). |
|
""" |
|
|
|
_CITATION = """\ |
|
@misc{neubig11kftt, |
|
author = {Graham Neubig}, |
|
title = {The {Kyoto} Free Translation Task}, |
|
howpublished = {http://www.phontron.com/kftt}, |
|
year = {2011} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "http://www.phontron.com/kftt/" |
|
|
|
_LICENSE = "Creative Commons Attribution-Share-Alike License 3.0 (CC BY-SA 3.0)" |
|
|
|
_DATA_URL = "http://www.phontron.com/kftt/download/kftt-data-1.0.tar.gz" |
|
|
|
|
|
|
|
|
|
TranslateData = collections.namedtuple("TranslateData", ["url", "language_to_file"]) |
|
|
|
|
|
class KFTTConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for KFTT.""" |
|
|
|
def __init__(self, language_pair=(None, None), **kwargs): |
|
"""BuilderConfig for KFTT. |
|
|
|
Args: |
|
for the `datasets.features.text.TextEncoder` used for the features feature. |
|
language_pair: pair of languages that will be used for translation. Should |
|
contain 2-letter coded strings. First will be used at source and second |
|
as target in supervised mode. For example: ("ja", "en"). |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(KFTTConfig, self).__init__( |
|
name="%s-%s" % (language_pair[0], language_pair[1]), |
|
description="English-Japanese translation dataset.", |
|
version=datasets.Version("1.0.0", ""), |
|
**kwargs, |
|
) |
|
|
|
|
|
assert "en" in language_pair |
|
assert "ja" in language_pair |
|
|
|
self.language_pair = language_pair |
|
|
|
|
|
class KFTT(datasets.GeneratorBasedBuilder): |
|
"""KFTT machine translation dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
KFTTConfig( |
|
language_pair=("en", "ja"), |
|
), |
|
] |
|
|
|
def _info(self): |
|
source, target = self.config.language_pair |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=self.config.language_pair)} |
|
), |
|
supervised_keys=(source, target), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive = dl_manager.download(_DATA_URL) |
|
|
|
source, target = self.config.language_pair |
|
path_tmpl = "kftt-data-1.0/data/orig/kyoto-{split}.{lang}" |
|
|
|
files = {} |
|
for split in ("train", "dev", "test", "tune"): |
|
files[split] = { |
|
"source_file": path_tmpl.format(split=split, lang=source), |
|
"target_file": path_tmpl.format(split=split, lang=target), |
|
"files": dl_manager.iter_archive(archive), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["dev"]), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]), |
|
datasets.SplitGenerator(name=datasets.Split("tune"), gen_kwargs=files["tune"]), |
|
] |
|
|
|
def _generate_examples(self, files, source_file, target_file): |
|
"""This function returns the examples in the raw (text) form.""" |
|
source_sentences, target_sentences = None, None |
|
for path, f in files: |
|
if path == source_file: |
|
source_sentences = f.read().decode("utf-8").split("\n") |
|
elif path == target_file: |
|
target_sentences = f.read().decode("utf-8").split("\n") |
|
if source_sentences is not None and target_sentences is not None: |
|
break |
|
|
|
assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % ( |
|
len(source_sentences), |
|
len(target_sentences), |
|
source_file, |
|
target_file, |
|
) |
|
|
|
source, target = self.config.language_pair |
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
result = {"translation": {source: l1, target: l2}} |
|
|
|
if all(result.values()): |
|
yield idx, result |
|
|