may-ohta commited on
Commit
e18bb13
Β·
1 Parent(s): aa164b5

Create mustc.py

Browse files
Files changed (1) hide show
  1. mustc.py +178 -0
mustc.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+
3
+ import csv
4
+ import os
5
+ import yaml
6
+ from itertools import groupby
7
+ from pathlib import Path
8
+
9
+ import torchaudio
10
+
11
+ import datasets
12
+
13
+
14
+ _VERSION = "3.0.0"
15
+
16
+ _CITATION = """
17
+ @article{CATTONI2021101155,
18
+ title = {MuST-C: A multilingual corpus for end-to-end speech translation},
19
+ author = {Roldano Cattoni and Mattia Antonino {Di Gangi} and Luisa Bentivogli and Matteo Negri and Marco Turchi},
20
+ journal = {Computer Speech & Language},
21
+ volume = {66},
22
+ pages = {101155},
23
+ year = {2021},
24
+ issn = {0885-2308},
25
+ doi = {https://doi.org/10.1016/j.csl.2020.101155},
26
+ url = {https://www.sciencedirect.com/science/article/pii/S0885230820300887},
27
+ }
28
+ """
29
+
30
+ _DESCRIPTION = """
31
+ MuST-C is a multilingual speech translation corpus whose size and quality facilitates
32
+ the training of end-to-end systems for speech translation from English into several languages.
33
+ For each target language, MuST-C comprises several hundred hours of audio recordings
34
+ from English [TED Talks](https://www.ted.com/talks), which are automatically aligned
35
+ at the sentence level with their manual transcriptions and translations.
36
+ """
37
+
38
+ _HOMEPAGE = "https://ict.fbk.eu/must-c/"
39
+
40
+ _LANGUAGES = ["de", "ja", "zh"]
41
+
42
+ _SAMPLE_RATE = 16_000
43
+
44
+
45
+ class MUSTC(datasets.GeneratorBasedBuilder):
46
+ """MUSTC Dataset."""
47
+
48
+ VERSION = datasets.Version(_VERSION)
49
+
50
+ BUILDER_CONFIGS = [
51
+ datasets.BuilderConfig(name=f"en-{lang}", version=datasets.Version(_VERSION)) for lang in _LANGUAGES
52
+ ]
53
+
54
+ @property
55
+ def manual_download_instructions(self):
56
+ return f"""Please download the MUST-C v3 from https://ict.fbk.eu/must-c/
57
+ and unpack it with `tar xvzf MUSTC_v3.0_{self.config.name}.tar.gz`.
58
+ Make sure to pass the path to the directory in which you unpacked the downloaded
59
+ file as `data_dir`: `datasets.load_dataset('mustc', data_dir="path/to/dir")`
60
+ """
61
+
62
+ # MUSTC_ROOT # <- point here in --data_dir in arg
63
+ # └── en-de
64
+ # └── data
65
+ # β”œβ”€β”€ dev
66
+ # β”‚ β”œβ”€β”€ txt
67
+ # β”‚ β”‚ β”œβ”€β”€ dev.de
68
+ # β”‚ β”‚ β”œβ”€β”€ dev.en
69
+ # β”‚ β”‚ └── dev.yaml
70
+ # β”‚ └── wav
71
+ # β”‚ β”œβ”€β”€ ted_767.wav
72
+ # β”‚ β”œβ”€β”€ [...]
73
+ # β”‚ └── ted_837.wav
74
+ # β”œβ”€β”€ train
75
+ # β”‚ β”œβ”€β”€ txt/
76
+ # β”‚ └── wav/
77
+ # β”œβ”€β”€ tst-COMMON
78
+ # β”‚ β”œβ”€β”€ txt/
79
+ # β”‚ └── wav/
80
+ # └── tst-HE
81
+ # β”œβ”€β”€ txt/
82
+ # └── wav/
83
+
84
+ def _info(self):
85
+ return datasets.DatasetInfo(
86
+ description=_DESCRIPTION,
87
+ features=datasets.Features(
88
+ client_id=datasets.Value("string"),
89
+ file=datasets.Value("string"),
90
+ audio=datasets.Audio(sampling_rate=_SAMPLE_RATE),
91
+ sentence=datasets.Value("string"),
92
+ translation=datasets.Value("string"),
93
+ id=datasets.Value("string"),
94
+ ),
95
+ supervised_keys=("file", "translation"),
96
+ homepage=_HOMEPAGE,
97
+ citation=_CITATION,
98
+ )
99
+
100
+ def _split_generators(self, dl_manager):
101
+ source_lang, target_lang = self.config.name.split("-")
102
+ assert source_lang == "en"
103
+ assert target_lang in _LANGUAGES
104
+
105
+ data_root = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
106
+ root_path = Path(data_root) / self.config.name
107
+
108
+ if not os.path.exists(root_path):
109
+ raise FileNotFoundError(
110
+ "Dataset not found. Manual download required. "
111
+ f"{self.manual_download_instructions}"
112
+ )
113
+
114
+ return [
115
+ datasets.SplitGenerator(
116
+ name=datasets.Split.TRAIN,
117
+ gen_kwargs={"root_path": root_path, "split": "train"},
118
+ ),
119
+ datasets.SplitGenerator(
120
+ name=datasets.Split.VALIDATION,
121
+ gen_kwargs={"root_path": root_path, "split": "dev"},
122
+ ),
123
+ datasets.SplitGenerator(
124
+ name=datasets.Split("tst.COMMON"),
125
+ gen_kwargs={"root_path": root_path, "split": "tst-COMMON"},
126
+ ),
127
+ datasets.SplitGenerator(
128
+ name=datasets.Split("tst.HE"),
129
+ gen_kwargs={"root_path": root_path, "split": "tst-HE"},
130
+ ),
131
+ ]
132
+
133
+ def _generate_examples(self, root_path, split):
134
+ source_lang, target_lang = self.config.name.split("-")
135
+
136
+ # Load audio segments
137
+ txt_root = Path(root_path) / "data" / split / "txt"
138
+ with (txt_root / f"{split}.yaml").open("r") as f:
139
+ segments = yaml.load(f, Loader=yaml.BaseLoader)
140
+
141
+ # Load source and target utterances
142
+ with open(txt_root / f"{split}.{source_lang}", "r") as s_f:
143
+ with open(txt_root / f"{split}.{target_lang}", "r") as t_f:
144
+ s_lines = s_f.readlines()
145
+ t_lines = t_f.readlines()
146
+ assert len(s_lines) == len(t_lines) == len(segments)
147
+ for i, (src, trg) in enumerate(zip(s_lines, t_lines)):
148
+ segments[i][source_lang] = src.rstrip()
149
+ segments[i][target_lang] = trg.rstrip()
150
+
151
+ # Load waveforms
152
+ _id = 0
153
+ wav_root = Path(root_path) / "data" / split / "wav"
154
+ for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
155
+ wav_path = wav_root / wav_filename
156
+ seg_group = sorted(_seg_group, key=lambda x: float(x["offset"]))
157
+ for i, segment in enumerate(seg_group):
158
+ offset = int(float(segment["offset"]) * int(_SAMPLE_RATE))
159
+ duration = int(float(segment["duration"]) * int(_SAMPLE_RATE))
160
+ waveform, sr = torchaudio.load(wav_path,
161
+ frame_offset=offset,
162
+ num_frames=duration)
163
+ assert duration == waveform.size(1), (duration, waveform.size(1))
164
+ assert sr == int(_SAMPLE_RATE), (sr, int(_SAMPLE_RATE))
165
+
166
+ yield _id, {
167
+ "file": wav_path.as_posix(),
168
+ "audio": {
169
+ "array": waveform.squeeze().numpy(),
170
+ "path": wav_path.as_posix(),
171
+ "sampling_rate": sr,
172
+ },
173
+ "sentence": segment[source_lang],
174
+ "translation": segment[target_lang],
175
+ "client_id": segment["speaker_id"],
176
+ "id": f"{wav_path.stem}_{i}",
177
+ }
178
+ _id += 1