Matthew Franglen commited on
Commit
cfa80ae
1 Parent(s): 67b8661

Get the sem-eval converter working

Browse files
Files changed (2) hide show
  1. src/alignment.py +16 -4
  2. src/main.py +24 -3
src/alignment.py CHANGED
@@ -14,10 +14,11 @@ def find_closest_text(
14
  ) -> pd.Series:
15
  # Returns a series of the replacement values aligned to the original values
16
  no_space_replacements = {text.replace(" ", ""): text for text in replacement}
17
- result = original.str.replace(" ", "").map(no_space_replacements)
 
18
  non_perfect_matches = result.isna().sum()
19
 
20
- assert non_perfect_matches / len(original) <= 0.05, (
21
  "Poor alignment with replacement text. "
22
  f"{non_perfect_matches:,} of {len(original),} rows did not match well"
23
  )
@@ -28,7 +29,8 @@ def find_closest_text(
28
  )
29
  return replacement.iloc[distances.argmin()]
30
 
31
- result.loc[result.isna()] = result[result.isna()].apply(closest)
 
32
  return result
33
 
34
 
@@ -63,6 +65,16 @@ def to_character_indices(
63
  )
64
 
65
 
 
 
 
 
 
 
 
 
 
 
66
  def to_aligned_character_indices(
67
  *,
68
  original: str,
@@ -147,7 +159,7 @@ def _aligned_start_index(
147
  def _aligned_end_index(
148
  text: str, original_index: int, indices: list[Optional[int]]
149
  ) -> int:
150
- closest_before = min(
151
  index for index in indices if index is not None and index <= original_index
152
  )
153
  index = indices.index(closest_before)
 
14
  ) -> pd.Series:
15
  # Returns a series of the replacement values aligned to the original values
16
  no_space_replacements = {text.replace(" ", ""): text for text in replacement}
17
+ original_text = original.str.replace(" ", "")
18
+ result = original_text.map(no_space_replacements)
19
  non_perfect_matches = result.isna().sum()
20
 
21
+ assert non_perfect_matches / len(original) <= 0.10, (
22
  "Poor alignment with replacement text. "
23
  f"{non_perfect_matches:,} of {len(original),} rows did not match well"
24
  )
 
29
  )
30
  return replacement.iloc[distances.argmin()]
31
 
32
+ result.loc[result.isna()] = original_text[result.isna()].apply(closest)
33
+ result = result.str.strip()
34
  return result
35
 
36
 
 
65
  )
66
 
67
 
68
+ def to_aligned_character_indices_series(row: pd.Series) -> pd.Series:
69
+ indices = to_character_indices(triplet=row.triples, text=row.original)
70
+ result = to_aligned_character_indices(
71
+ original=row.original,
72
+ replacement=row.text,
73
+ original_indices=indices,
74
+ )
75
+ return pd.Series(asdict(result))
76
+
77
+
78
  def to_aligned_character_indices(
79
  *,
80
  original: str,
 
159
  def _aligned_end_index(
160
  text: str, original_index: int, indices: list[Optional[int]]
161
  ) -> int:
162
+ closest_before = max(
163
  index for index in indices if index is not None and index <= original_index
164
  )
165
  index = indices.index(closest_before)
src/main.py CHANGED
@@ -3,8 +3,12 @@ from typing import Annotated
3
 
4
  import typer
5
 
6
- from .alignment import to_character_indices_series
7
- from .data import read_aste_file
 
 
 
 
8
  from .sentiment import to_nice_sentiment
9
 
10
  app = typer.Typer()
@@ -37,7 +41,24 @@ def sem_eval(
37
  sem_eval_file: Annotated[Path, typer.Option()],
38
  output_file: Annotated[Path, typer.Option()],
39
  ) -> None:
40
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
 
43
  if __name__ == "__main__":
 
3
 
4
  import typer
5
 
6
+ from .alignment import (
7
+ find_closest_text,
8
+ to_aligned_character_indices_series,
9
+ to_character_indices_series,
10
+ )
11
+ from .data import read_aste_file, read_sem_eval_file
12
  from .sentiment import to_nice_sentiment
13
 
14
  app = typer.Typer()
 
41
  sem_eval_file: Annotated[Path, typer.Option()],
42
  output_file: Annotated[Path, typer.Option()],
43
  ) -> None:
44
+ df = read_aste_file(aste_file)
45
+ sem_eval_df = read_sem_eval_file(sem_eval_file)
46
+
47
+ df["original"] = df.text
48
+ df["text"] = find_closest_text(original=df.original, replacement=sem_eval_df.text)
49
+ df = df.explode("triples")
50
+ df = df.reset_index(drop=False)
51
+ df = df.merge(
52
+ df.apply(to_aligned_character_indices_series, axis="columns"),
53
+ left_index=True,
54
+ right_index=True,
55
+ )
56
+ df["sentiment"] = df.triples.apply(lambda triple: to_nice_sentiment(triple[2]))
57
+ df = df.drop(columns=["original", "triples"])
58
+
59
+ print(df.sample(3))
60
+
61
+ df.to_parquet(output_file, compression="gzip")
62
 
63
 
64
  if __name__ == "__main__":