aste-v2 / src /alignment.py
Matthew Franglen
Add make target to generate all the laptop 2014 data
22c9e6d
raw
history blame
5.94 kB
from dataclasses import asdict
from typing import Optional
import Levenshtein
import pandas as pd
from .types import CharacterIndices, Triplet, WordSpans
def find_closest_text(
*,
original: pd.Series,
replacement: pd.Series,
) -> pd.Series:
# Returns a series of the replacement values aligned to the original values
no_space_replacements = {text.replace(" ", ""): text for text in replacement}
original_text = original.str.replace(" ", "")
result = original_text.map(no_space_replacements)
non_perfect_matches = result.isna().sum()
assert non_perfect_matches / len(original) <= 0.20, (
"Poor alignment with replacement text. "
f"{non_perfect_matches:,} of {len(original),} rows did not match well"
)
def closest(text: str) -> str:
distances = replacement.apply(
lambda comparison: Levenshtein.distance(text, comparison)
)
return replacement.iloc[distances.argmin()]
result.loc[result.isna()] = original_text[result.isna()].apply(closest)
result = result.str.strip()
return result
def to_character_indices_series(row: pd.Series) -> pd.Series:
result = to_character_indices(triplet=row.triples, text=row.text)
return pd.Series(asdict(result))
def to_character_indices(
*,
triplet: Triplet,
text: str,
) -> CharacterIndices:
aspect_span, opinion_span, _ = triplet
assert _is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}"
assert _is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
spans = WordSpans.make(text)
aspect_start_index, aspect_end_index = spans.to_indices(aspect_span)
aspect_term = text[aspect_start_index : aspect_end_index + 1]
opinion_start_index, opinion_end_index = spans.to_indices(opinion_span)
opinion_term = text[opinion_start_index : opinion_end_index + 1]
return CharacterIndices(
aspect_start_index=aspect_start_index,
aspect_end_index=aspect_end_index,
aspect_term=aspect_term,
opinion_start_index=opinion_start_index,
opinion_end_index=opinion_end_index,
opinion_term=opinion_term,
)
def to_aligned_character_indices_series(row: pd.Series) -> pd.Series:
indices = to_character_indices(triplet=row.triples, text=row.original)
result = to_aligned_character_indices(
original=row.original,
replacement=row.text,
original_indices=indices,
)
return pd.Series(asdict(result))
def to_aligned_character_indices(
*,
original: str,
replacement: str,
original_indices: CharacterIndices,
) -> CharacterIndices:
indices = _aligned_character_indices(original=original, replacement=replacement)
aspect_start_index = _aligned_start_index(
text=replacement,
original_index=original_indices.aspect_start_index,
indices=indices,
)
aspect_end_index = _aligned_end_index(
text=replacement,
original_index=original_indices.aspect_end_index,
indices=indices,
)
aspect_term = replacement[aspect_start_index : aspect_end_index + 1]
opinion_start_index = _aligned_start_index(
text=replacement,
original_index=original_indices.opinion_start_index,
indices=indices,
)
opinion_end_index = _aligned_end_index(
text=replacement,
original_index=original_indices.opinion_end_index,
indices=indices,
)
opinion_term = replacement[opinion_start_index : opinion_end_index + 1]
return CharacterIndices(
aspect_start_index=aspect_start_index,
aspect_end_index=aspect_end_index,
aspect_term=aspect_term,
opinion_start_index=opinion_start_index,
opinion_end_index=opinion_end_index,
opinion_term=opinion_term,
)
def _is_sequential(span: tuple[int, ...]) -> bool:
return all(span[index + 1] - span[index] == 1 for index in range(len(span) - 1))
def _aligned_character_indices(original: str, replacement: str) -> list[Optional[int]]:
indices: list[Optional[int]] = list(range(len(original)))
for operation, _source_position, destination_position in Levenshtein.editops(
original, replacement
):
if operation == "replace":
indices[destination_position] = None
elif operation == "insert":
indices.insert(destination_position, None)
elif operation == "delete":
del indices[destination_position]
return indices
def _aligned_start_index(
text: str, original_index: int, indices: list[Optional[int]]
) -> int:
closest_after = min(
index for index in indices if index is not None and index >= original_index
)
index = indices.index(closest_after)
# Not every character in the original text is aligned to a character in the
# replacement text. The replacement text may have deleted it, or replaced
# it. Can step back through each letter until the word boundary is found or
# an aligned character is found.
while index > 0:
if indices[index - 1] is not None:
break
if text[index - 1] == " ":
break
index -= 1
return index
def _aligned_end_index(
text: str, original_index: int, indices: list[Optional[int]]
) -> int:
closest_before = max(
index for index in indices if index is not None and index <= original_index
)
index = indices.index(closest_before)
# Not every character in the original text is aligned to a character in the
# replacement text. The replacement text may have deleted it, or replaced
# it. Can step back through each letter until the word boundary is found or
# an aligned character is found.
while index < len(indices) - 1:
if indices[index + 1] is not None:
break
if text[index + 1] == " ":
break
index += 1
return index