|
from dataclasses import asdict |
|
from typing import Optional |
|
|
|
import Levenshtein |
|
import pandas as pd |
|
|
|
from .types import CharacterIndices, Triplet, WordSpans |
|
|
|
|
|
def find_closest_text( |
|
*, |
|
original: pd.Series, |
|
replacement: pd.Series, |
|
) -> pd.Series: |
|
|
|
no_space_replacements = {text.replace(" ", ""): text for text in replacement} |
|
original_text = original.str.replace(" ", "") |
|
result = original_text.map(no_space_replacements) |
|
non_perfect_matches = result.isna().sum() |
|
|
|
assert non_perfect_matches / len(original) <= 0.20, ( |
|
"Poor alignment with replacement text. " |
|
f"{non_perfect_matches:,} of {len(original),} rows did not match well" |
|
) |
|
|
|
def closest(text: str) -> str: |
|
distances = replacement.apply( |
|
lambda comparison: Levenshtein.distance(text, comparison) |
|
) |
|
return replacement.iloc[distances.argmin()] |
|
|
|
result.loc[result.isna()] = original_text[result.isna()].apply(closest) |
|
result = result.str.strip() |
|
return result |
|
|
|
|
|
def to_character_indices_series(row: pd.Series) -> pd.Series: |
|
result = to_character_indices(triplet=row.triples, text=row.text) |
|
return pd.Series(asdict(result)) |
|
|
|
|
|
def to_character_indices( |
|
*, |
|
triplet: Triplet, |
|
text: str, |
|
) -> CharacterIndices: |
|
aspect_span, opinion_span, _ = triplet |
|
assert _is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}" |
|
assert _is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}" |
|
|
|
spans = WordSpans.make(text) |
|
|
|
aspect_start_index, aspect_end_index = spans.to_indices(aspect_span) |
|
aspect_term = text[aspect_start_index : aspect_end_index + 1] |
|
opinion_start_index, opinion_end_index = spans.to_indices(opinion_span) |
|
opinion_term = text[opinion_start_index : opinion_end_index + 1] |
|
|
|
return CharacterIndices( |
|
aspect_start_index=aspect_start_index, |
|
aspect_end_index=aspect_end_index, |
|
aspect_term=aspect_term, |
|
opinion_start_index=opinion_start_index, |
|
opinion_end_index=opinion_end_index, |
|
opinion_term=opinion_term, |
|
) |
|
|
|
|
|
def to_aligned_character_indices_series(row: pd.Series) -> pd.Series: |
|
indices = to_character_indices(triplet=row.triples, text=row.original) |
|
result = to_aligned_character_indices( |
|
original=row.original, |
|
replacement=row.text, |
|
original_indices=indices, |
|
) |
|
return pd.Series(asdict(result)) |
|
|
|
|
|
def to_aligned_character_indices( |
|
*, |
|
original: str, |
|
replacement: str, |
|
original_indices: CharacterIndices, |
|
) -> CharacterIndices: |
|
indices = _aligned_character_indices(original=original, replacement=replacement) |
|
|
|
aspect_start_index = _aligned_start_index( |
|
text=replacement, |
|
original_index=original_indices.aspect_start_index, |
|
indices=indices, |
|
) |
|
aspect_end_index = _aligned_end_index( |
|
text=replacement, |
|
original_index=original_indices.aspect_end_index, |
|
indices=indices, |
|
) |
|
aspect_term = replacement[aspect_start_index : aspect_end_index + 1] |
|
|
|
opinion_start_index = _aligned_start_index( |
|
text=replacement, |
|
original_index=original_indices.opinion_start_index, |
|
indices=indices, |
|
) |
|
opinion_end_index = _aligned_end_index( |
|
text=replacement, |
|
original_index=original_indices.opinion_end_index, |
|
indices=indices, |
|
) |
|
opinion_term = replacement[opinion_start_index : opinion_end_index + 1] |
|
|
|
return CharacterIndices( |
|
aspect_start_index=aspect_start_index, |
|
aspect_end_index=aspect_end_index, |
|
aspect_term=aspect_term, |
|
opinion_start_index=opinion_start_index, |
|
opinion_end_index=opinion_end_index, |
|
opinion_term=opinion_term, |
|
) |
|
|
|
|
|
def _is_sequential(span: tuple[int, ...]) -> bool: |
|
return all(span[index + 1] - span[index] == 1 for index in range(len(span) - 1)) |
|
|
|
|
|
def _aligned_character_indices(original: str, replacement: str) -> list[Optional[int]]: |
|
indices: list[Optional[int]] = list(range(len(original))) |
|
for operation, _source_position, destination_position in Levenshtein.editops( |
|
original, replacement |
|
): |
|
if operation == "replace": |
|
indices[destination_position] = None |
|
elif operation == "insert": |
|
indices.insert(destination_position, None) |
|
elif operation == "delete": |
|
del indices[destination_position] |
|
return indices |
|
|
|
|
|
def _aligned_start_index( |
|
text: str, original_index: int, indices: list[Optional[int]] |
|
) -> int: |
|
closest_after = min( |
|
index for index in indices if index is not None and index >= original_index |
|
) |
|
index = indices.index(closest_after) |
|
|
|
|
|
|
|
|
|
|
|
while index > 0: |
|
if indices[index - 1] is not None: |
|
break |
|
if text[index - 1] == " ": |
|
break |
|
index -= 1 |
|
return index |
|
|
|
|
|
def _aligned_end_index( |
|
text: str, original_index: int, indices: list[Optional[int]] |
|
) -> int: |
|
closest_before = max( |
|
index for index in indices if index is not None and index <= original_index |
|
) |
|
index = indices.index(closest_before) |
|
|
|
|
|
|
|
|
|
|
|
while index < len(indices) - 1: |
|
if indices[index + 1] is not None: |
|
break |
|
if text[index + 1] == " ": |
|
break |
|
index += 1 |
|
return index |
|
|