dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1176
ec5538740df44af893c14ebd4bc47549
[ "2014年迎春杯四年级竞赛初赛", "2014年迎春杯三年级竞赛初赛", "2014年迎春杯三年级竞赛初赛" ]
2
single_choice
动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分$$6$$个,剩$$57$$个桃子;如果每只猴子分$$9$$个,就有$$5$$只猴子一个也分不到,还有一只猴子只分到$$3$$个。那么,共有( )个桃子。
[ [ { "aoVal": "A", "content": "$$216$$ " } ], [ { "aoVal": "B", "content": "$$324$$ " } ], [ { "aoVal": "C", "content": "$$273$$ " } ], [ { "aoVal": "D", "content": "$$301$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->盈亏问题->盈亏基本类型->盈亏基本类型盈亏问题" ]
[ "每只猴子多分了$$3$$个,分$$5\\times 9+\\left( 9-3 \\right)+57=108$$(个),那么共$$108\\div 3=36$$(只)猴子,共$$36\\times 6+57=273$$(个)桃子。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
213
a2b1aa37363b444cb0f92597797304bc
[ "2006年四年级竞赛创新杯", "2006年第4届创新杯四年级竞赛复赛第4题" ]
2
single_choice
桌子上并排放着三张扑克牌,A右边的两张中至少有一张K,而K的左边两张中至少有一张K,黑桃左边的两张至少有一张红桃,而红桃右边的两张中也至少有一张红桃,中间的那张牌是( ).
[ [ { "aoVal": "A", "content": "红桃A " } ], [ { "aoVal": "B", "content": "红桃K " } ], [ { "aoVal": "C", "content": "黑桃A " } ], [ { "aoVal": "D", "content": "黑桃K " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "从左至右,顺次有三张牌,编号为①②③由第一、二个条件得①为A,②为K,③为K.因为,黑桃左边有两张可得③为黑桃,即可得出③为黑桃K,且①、②中至少有一张是红桃.因为红桃右边有两张,可得①为红桃,即得出①为红桃A,且②、③中至少有一张红桃.因为,③为黑桃K,所以②为红桃.因此得出②为红桃K,即中间的一张为红桃K.故选B " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1994
d382c1142f6f4efda3d8f286346db729
[ "2011年四年级其它", "2016年第3届广东深圳鹏程杯六年级竞赛集训材料第十五章综合训练题(五)第4题" ]
2
single_choice
食品店上午卖出每千克为$$20$$元、$$25$$元、$$30$$元的$$3$$种糖果共$$100$$千克,共收入$$2570$$元.已知其中售出每千克$$25$$元和每千克$$30$$元的糖果共收入了$$1970$$元,那么,每千克$$25$$元的糖果售出了多少千克?
[ [ { "aoVal": "A", "content": "$$23$$ " } ], [ { "aoVal": "B", "content": "$$24$$ " } ], [ { "aoVal": "C", "content": "$$25$$ " } ], [ { "aoVal": "D", "content": "$$26$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->鸡兔同笼问题->假设法解鸡兔同笼->基本型->变型题" ]
[ "每千克$$25$$元和每千克$$30$$元的糖果共收入了$$1970$$元,则每千克$$20$$元的收入:$$2570-1970=600$$元, 所以卖出:$$600\\div 20=30$$千克, 所以卖出每千克$$25$$元和每千克$$30$$克的糖果共$$100-30=70$$千克, 相当于将题目转换成: 卖出每千克$$25$$元和每千克$$30$$克的糖果共$$70$$千克,收入$$1970$$元,问:每千克$$25$$元的糖果售出了多少千克? 转换成了最基本的鸡兔同笼问题. 假设全是每千克$$25$$元的,$$\\left( 1970-25\\times 70 \\right)\\div \\left( 30-25\\right)=44$$(千克), 所以$$30$$元的是$$44$$千克,所以$$25$$元的有:$$70-44=26$$(千克). 关键:将三种以及更多的动物/东西,转化为两种最基本模型,即:抓住转化后的``头''与``脚''. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
6
01209832d21f43598c8e6147842abaad
[ "1993年四年级竞赛创新杯", "2006年第4届创新杯四年级竞赛初赛B卷第7题" ]
1
single_choice
甲、乙、丙、丁四位同学的运动衫上印有不同的号码。 赵说:``甲是$$2$$号,乙是$$3$$号。'' 钱说:``丙是$$4$$号,乙是$$2$$号。'' 孙说:``丁是$$2$$号,丙是$$3$$号。'' 李说:``丁是$$4$$号,甲是$$1$$号。'' 又知道赵、钱、孙、李每人都只说对了一半,那么丙的号码是( )。
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "无论赵的哪半句对了,钱的后半句一定错了,那前半句一定对了,丙是$$4$$号。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2389
d502b640a5ef4c999b1be584d18dc564
[ "2020年广东广州羊排赛六年级竞赛第7题3分" ]
1
single_choice
在$$\frac{5}{7}$$,$$ \frac{2}{13}$$, $$\frac{3}{4}$$,$$\frac{10}{17}$$ 几个分数中,按从大到小排列,排在第二位的是.
[ [ { "aoVal": "A", "content": "$$\\frac{5}{7}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{13}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{4}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{17}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数化小数法" ]
[ "$$\\frac{5}{7}=0.714285714285\\cdots \\cdots $$,$$\\frac{2}{13}=0.153846153846\\cdots \\cdots $$, $$\\frac{3}{4}=0.75$$,$$\\frac{10}{17}=0.588235294\\cdots \\cdots $$, $$0.75\\textgreater0.714285714285\\cdots \\cdots \\textgreater0.588235294\\cdots \\cdots \\textgreater$$ $$0.153846153846\\cdots \\cdots $$,所以$$\\frac{3}{4}\\textgreater\\frac{5}{7}\\textgreater\\frac{10}{17}\\textgreater\\frac{2}{13}$$, 则从大到小排列排在第二位的是$$\\frac{5}{7}$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2489
6243720213274932ad5613d3de10637f
[ "2021年鹏程杯六年级竞赛初赛第5题" ]
1
single_choice
把一个自然数$$n$$的数位上的偶数数字相加所得的和记为$$E(n)$$,例如:$$E\left( 1999 \right)=0$$,$$E\left( 2000 \right)=2$$,$$E\left( 2021 \right)=2+2=4$$.则$$E\left( 1 \right)+E\left( 2 \right)+E\left( 3 \right)+\cdots +E\left( 100 \right)=$$.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$400$$ " } ], [ { "aoVal": "D", "content": "$$2020$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$2$$,$$4$$,$$6$$,$$8$$这$$4$$个数字,每个在个位出现$$10$$次,在十位出现$$10$$次, 所以$$E(1)+E(2)+···+E(100)=(2+4+6+8)\\times (10+10)=400$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
914
fc003f9051084739a4223683a1f05a85
[ "2011年全国美国数学大联盟杯小学高年级五年级竞赛初赛第34题" ]
2
single_choice
$$180$$的因数中最大的完全平方数比最小的完全平方数大多少?
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$27$$ " } ], [ { "aoVal": "C", "content": "$$32$$ " } ], [ { "aoVal": "D", "content": "$$35$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->因数与倍数基础" ]
[ "最大完全平方数是$$36$$,最小完全平方数是$$1$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1667
892528168a2e4be5a1936caffece498c
[ "2021年新希望杯六年级竞赛初赛第19题5分" ]
1
single_choice
对角巷的魔药店进了一批曼德拉草,按$$100 \%$$的利润率来定价,结果只售出$$30 \%$$的曼德拉草.为尽早售出剩下的曼德拉草,魔药店决定打六折销售,结果剩余的曼德拉草销售一空.这批曼德拉草的利润率是~\uline{~~~~~~~~~~}~$$ \%$$.
[ [ { "aoVal": "A", "content": "$$44$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$28$$ " } ], [ { "aoVal": "D", "content": "$$40$$ " } ], [ { "aoVal": "E", "content": "$$36$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "假设这一批产品每件成本为$$1$$元,一共有$$100$$件,总成本为$$1\\times 100=100$$(元), 原价:$$1\\times (1+100 \\%)=2$$(元), 打折后:$$2\\times 0.6=1.2$$(元), 原价售出$$30 \\%$$:$$2\\times 100\\times 30 \\%=60$$(元), 打折后全部售出:$$1.2\\times 100\\times(1-30 \\%)=84$$(元), 总售价:$$60+84=144$$(元), 利润率:$$\\frac{144-100}{100}=44 \\%$$. 答:实际利润率为$$44 \\%$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1974
c13b52ba0d684e4c83f53c69ea5d183b
[ "2013年第25届广东广州五羊杯六年级竞赛第5题5分" ]
1
single_choice
小红比她爸爸少$$26$$岁,已知三年后她爸爸的年龄是她的三倍,则今年爸爸和小红的岁数的和是.
[ [ { "aoVal": "A", "content": "$$43$$ " } ], [ { "aoVal": "B", "content": "$$46$$ " } ], [ { "aoVal": "C", "content": "$$49$$ " } ], [ { "aoVal": "D", "content": "$$52$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "设小红今年$$x$$岁.则能列出方程:$$3(x+3)=x+26+3$$, 解出$$x=10$$,即小红今年$$10$$岁,父亲今年$$36$$岁,所以年龄和为$$46$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
339
7741650d7d8b4cd2b911605b443a3d65
[ "2012年全国学而思杯三年级竞赛第15题" ]
2
single_choice
房间里有$$3$$种小动物:小白鼠、小花猫、小黄狗.房间里如果猫的数量不超过狗,狗就会欺负猫;如果鼠的数量不超过猫,猫就会欺负鼠;如果猫、狗数量之和不超过鼠,鼠就会偷吃东西.现在小白鼠、小花猫、小黄狗三种小动物在房间里相安无事,但是再进来任意一只,都会打破平衡.那么,原来房间里有多少只小动物?
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ], [ { "aoVal": "E", "content": "$$12$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->比较型逻辑推理", "Overseas Competition->知识点->组合模块->逻辑推理" ]
[ "不超过表示等于或小于均可.现在相安无事,说明猫比狗多,鼠比猫多,猫与狗之和比鼠多,从再进来任意$$1$$只,都会打破平衡可知,猫比狗多$$1$$只,鼠比猫多$$1$$只,猫与狗之和比鼠多$$1$$只,经尝试知有$$4$$只鼠,$$3$$只猫,$$2$$只狗. 再进$$1$$只猫,会打破平衡,所以鼠比猫多$$1$$只; 再进$$1$$只狗,会打破平衡,所以猫比狗多$$1$$只; 再进$$1$$只鼠,会打破平衡,所以猫与狗的和比鼠多$$1$$只; 比较第一个条件和第三个条件可知,猫有$$3$$只,进而求得鼠有$$4$$只,狗有$$2$$只. 共有$$4+3+2=9$$(只)小动物. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1511
51ebb2ff78fc476b9ca7bde2063b04ca
[ "2016年全国美国数学大联盟杯小学中年级三年级竞赛初赛" ]
2
single_choice
某次小明坐缆车上山,从他坐上车开始,一路上他一直在数对面交错而过的缆车数量,一共是$$60$$辆,则在这一整条索道上(双向)共有辆缆车?
[ [ { "aoVal": "A", "content": "$$30$$辆 " } ], [ { "aoVal": "B", "content": "$$60$$辆 " } ], [ { "aoVal": "C", "content": "$$61$$辆 " } ], [ { "aoVal": "D", "content": "$$120$$辆 " } ] ]
[ "拓展思维->七大能力->实践应用" ]
[ "缆车是循环的,它遇到的第一辆就是紧随其后的,那么他遇到的最后一辆就是它前面的,所以除了它自己这辆,还有$$60$$辆,一共是$$60+1=61$$辆. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1440
e81d669db1e44391be06151742fd663b
[ "2021年春蕾杯六年级竞赛第2题2分", "2020年春蕾杯六年级竞赛第7题2分" ]
1
single_choice
父亲的年龄是女儿现在的年龄时,女儿刚$$4$$岁;当父亲$$79$$岁时,女儿的年龄恰好是父亲现在的年龄,则父亲现在的年龄是岁.
[ [ { "aoVal": "A", "content": "$$54$$ " } ], [ { "aoVal": "B", "content": "$$64$$ " } ], [ { "aoVal": "C", "content": "$$52$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\left( 79-4 \\right)\\div 3=75\\div 3=25$$(岁), $$79-25=54$$(岁), 答:父亲现在的年龄是$$54$$岁. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
596
0fcc3db86db240ec86eb7c52f32d138b
[ "2014年迎春杯三年级竞赛初赛", "2014年迎春杯四年级竞赛初赛", "2014年迎春杯三年级竞赛初赛", "2014年迎春杯四年级竞赛初赛" ]
2
single_choice
你能根据以下的线索找出百宝箱的密码吗? ($$1$$)密码是一个八位数; ($$2$$)密码既是$$3$$的倍数又是$$25$$的倍数; ($$3$$)这个密码在$$20000000$$到$$30000000$$之间; ($$4$$)百万位与十万位上的数字相同; ($$5$$)百位数字比万位数字小$$2$$; ($$6$$)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是$$25$$。 依据上面的条件,推理出这个密码应该是( )
[ [ { "aoVal": "A", "content": "$$25526250$$ " } ], [ { "aoVal": "B", "content": "$$26650350$$ " } ], [ { "aoVal": "C", "content": "$$27775250$$ " } ], [ { "aoVal": "D", "content": "$$28870350$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数问题带余除法" ]
[ "解:($$1$$)四个选项都是$$8$$位数; ($$2$$)四选项都是$$25$$的倍数,C的数字和是$$35$$不是$$3$$的倍数,排除C; ($$3$$)都满足条件; ($$4$$)都满足条件; ($$5$$)A百位数字和万位数字相等,D百位数字比万位数字少$$4$$,不满足条件; ($$6$$)B满足条件。 故选:B。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1382
b9b4adc037374c2db107d0d54829656d
[ "2004年六年级竞赛创新杯", "2004年第2届创新杯六年级竞赛初赛第5题", "2021年广东广州番禺区执信中学附属小学小升初(分班考)第17题1分" ]
1
single_choice
甲、乙两根同样长的绳子,甲绳先剪去$$\frac{1}{3}$$,再剪去$$\frac{1}{3}$$米;乙绳先剪去$$\frac{1}{3}$$米,再剪去剩下部分的$$\frac{1}{3}$$.两根绳子剩下部分的长度相比较是.
[ [ { "aoVal": "A", "content": "甲绳剩下的部分长 " } ], [ { "aoVal": "B", "content": "乙绳剩下的部分长 " } ], [ { "aoVal": "C", "content": "甲绳与乙绳剩下的部分同样长 " } ], [ { "aoVal": "D", "content": "不能确定 " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->量率对应已知单位1" ]
[ "选$$\\text{B}$$ 假设甲、乙原来长度都是$$a$$米, 甲剩下($$\\frac{2}{3}a-\\frac{1}{3}$$)米; 乙剩下$$\\frac{2}{3}(a-\\frac{1}{3})$$=$$\\frac{2}{3}a-\\frac{2}{9}$$米 所以乙剩下的部分长. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2327
f9a8b9dc7d954e768ba17fd1e4147db7
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(三)" ]
1
single_choice
一列火车通过一座长$$320$$米的桥用了$$105$$秒,当它通过$$860$$米的隧道时,速度是过桥速度的$$2$$倍,结果用了$$120$$秒,火车通过大桥时的速度是每秒(~ )米;火车的车身长度为(~ )米.
[ [ { "aoVal": "A", "content": "$$2$$;$$100$$ " } ], [ { "aoVal": "B", "content": "$$4$$;$$100$$ " } ], [ { "aoVal": "C", "content": "$$8$$;$$100$$ " } ], [ { "aoVal": "D", "content": "$$8$$;$$200$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "若通过$$860$$米隧道时速度不变则需要$$120\\times 2=240$$(秒),火车过桥速度:$$\\left( 860-320 \\right)\\div \\left( 240-105 \\right)=4$$(米/秒):火车车身长:$$105\\times 4-320=100$$(米). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1420
7a3c52c432404b18aab5b6165cca75ad
[ "2014年华杯赛六年级竞赛初赛" ]
2
single_choice
甲、乙、丙、丁四个人今年的年龄之和是$$72$$岁,几年前(至少一年)甲是$$22$$岁时,乙是$$16$$岁,又知道,当甲是$$19$$岁的时候,丙的年龄是丁的$$3$$倍(此时丁至少$$1$$岁)。如果甲、乙、丙、丁四个人的年龄互不相同,那么今年甲的年龄可以有( )种情况。
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之和倍型" ]
[ "已知四个人今年的年龄之和是$$72$$岁,几年前(至少一年)甲是$$22$$岁时,乙是$$16$$岁;当甲是$$19$$岁时,则乙$$13$$岁,丙的年龄是丁的$$3$$倍(此时丁至少$$1$$岁),因为此时是至少$$4$$年前,所以$$4$$个人的年龄和不超过$$72-4\\times 4=56$$(岁)。 设此时丁的年龄是$$x$$岁,丙的年龄是$$3x$$岁,则$$19+13+x+3x\\leqslant 56$$,解得$$x\\leqslant 6$$,又知道$$x\\geqslant 1$$,所以丁的年龄有$$6$$种情况。 如果甲、乙、丙、丁四个人的年龄互不相同,所以今年甲的年龄可以有$$6$$种情况。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1871
978a7d82a8cb49c399f08630dbc2070a
[ "2016年第3届广东深圳鹏程杯六年级竞赛集训材料第十九章综合训练题(九)第2题" ]
2
single_choice
小红从一本书的第$$54$$页阅读到第$$67$$页,小明从第$$95$$页阅读到第$$135$$页,小莉从第$$180$$页阅读到第$$273$$页,他们总共阅读了多少页?
[ [ { "aoVal": "A", "content": "$$147$$ " } ], [ { "aoVal": "B", "content": "$$148$$ " } ], [ { "aoVal": "C", "content": "$$149$$ " } ], [ { "aoVal": "D", "content": "$$150$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "解:阿里读的页数是$$67-54+1=14$$, 同理苏明读的页数是$$135-95+1=41$$, 梅莉阅读的页数是$$273-180+1=94$$, 他们共读$$14+41+94=149$$页. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1493
447832eddfca452aa873c251cb58becf
[ "2010年第11届上海中环杯小学中年级三年级竞赛第11题12分" ]
2
single_choice
一个四口之家,由爸爸、妈妈、大儿子和小儿子组成,他们的年龄之和是$$68$$岁,爸爸比妈妈大$$2$$岁.$$3$$年前,这个家庭的成员的年龄之和是$$57$$岁;$$5$$年前,这个家庭的成员的年龄之和是$$52$$岁.请问这个家庭每个成员现在的年龄各是多少岁? There are four members in a family, dad, mom, elder brother, and little brother. Their sum of the ages this year is $68$, and dad is $2$ years older than mom. $3$ years ago from now, their sum of the ages was $57$; $5$ years ago from now, their sum of ages was $52$. How old is dad this year?
[ [ { "aoVal": "A", "content": "$$35$$ " } ], [ { "aoVal": "B", "content": "$$32$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$27$$ " } ], [ { "aoVal": "E", "content": "$$25$$ " } ] ]
[ "拓展思维->能力->逻辑分析", "Overseas Competition->知识点->应用题模块->年龄问题" ]
[ "$$3$$年前,四人年龄之和是$$68-3\\times 4=56$$(岁),但实际上是$$57$$岁,这说明$$3$$ 年前小儿子还没有出生,是$$2$$年前出生的,所以小儿子今年是$$2$$岁.则其余$$3$$人年龄之和是$$66$$岁.$$5$$年前,$$3$$人的年龄和应该是$$66-5\\times 3=51$$(岁),但实际上是$$52$$岁,这说明$$5$$年前大儿子还没有出生,是$$4$$年前出生的,所以大儿子今年是$$4$$岁.则爸爸妈妈的年龄和是$$62$$岁,而爸爸比妈妈大两岁,所以爸爸今年$$32$$岁,妈妈今年$$30$$岁. $3$ years ago from now, their sum of ages should be $$68-3\\times 4=56$$ but actually it was $57$, which means the little brother was not born $3$ years ago. He was born $2$ years ago. Thus, the little brother this year is $2$ years old and the sum of the other three members this year is $68-2=66$ years old. $5$ years ago from now, the sum of the three members ages should be $66-5\\times 3=51$ but actually it was $52$, whcih means the elder brother was not born $5$ years ago. He was born $4$ years ago. Thus, the elder brother is $4$ years old this year. Thus, the sum of ages of mom and dad this year is $66-4=62$. Dad is $2$ years older than mom, which means dad is $32$ years old and mom is $30$ years old. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1846
e00f5265f3fe4eb4871f6ab41a80cb58
[ "2016年创新杯六年级竞赛训练题(三)第5题" ]
2
single_choice
加工一批零件,甲、乙两人的工效比为$$5:4$$,两人同时加工$$2$$小时以后,甲的机器发生了故障停工修理一小时,(乙按原工效继续工作),然后甲以原工效的$$60 \%$$与乙合作完了剩下的零件.因此比原计划推迟$$1\frac{4}{7}$$小时完成全部任务,求实际用(~ )小时完成全部任务.
[ [ { "aoVal": "A", "content": "$$4\\frac{4}{7}$$小时 " } ], [ { "aoVal": "B", "content": "$$6\\frac{4}{7}$$小时 " } ], [ { "aoVal": "C", "content": "$$7\\frac{4}{7}$$小时 " } ], [ { "aoVal": "D", "content": "$$8\\frac{4}{7}$$小时 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "略 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1359
5539cdc83659420194561a34cc286f14
[ "2019年美国数学大联盟杯竞赛" ]
1
single_choice
$$8$$千克的香蕉是$$12$$美元.$$12$$千克的香蕉是多少钱?
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->先归一再归总" ]
[ "$$8$$千克的香蕉是$$12$$美元.$$12$$千克的香蕉是多少钱? $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde12\\div 8\\times 12$$ $$=12\\times 12\\div 8$$ $$=144\\div 8$$ $$=18$$(美元). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2565
282b0f37511b456ea00f21f867f8e350
[ "2017年第17届湖北武汉世奥赛五年级竞赛决赛第8题" ]
1
single_choice
有一位疯狂的艺术家为了寻找灵感,把一张厚$$0.1$$毫米的足够大的纸对半撕开,重叠起来,然后再对半撕开重叠起来,假设他如此重复这一过程$$14$$次,并且纸没有倒塌,这叠纸的高度会(~ ).
[ [ { "aoVal": "A", "content": "像山一样高 " } ], [ { "aoVal": "B", "content": "像平房(一层楼)一样高 " } ], [ { "aoVal": "C", "content": "像成人一样高 " } ], [ { "aoVal": "D", "content": "不足$$1$$米 " } ] ]
[ "拓展思维->拓展思维->计算模块->乘方->乘方的认识" ]
[ "叠纸高$$0.1\\times {{2}^{14}}=1638.4$$(毫米).像成人一样高. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
609
0d08eab315fd45219e91f4f69dae6d1b
[ "2019年广东深圳全国小学生数学学习能力测评四年级竞赛初赛第8题3分" ]
1
single_choice
在$$9$$和$$5$$之间添上个$$0$$,读作九百万零五.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "最后读作:九百万零五,所以$$9$$在百万位,$$5$$在个位.故中间需要添$$5$$个$$0$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
891
cdaa9a7f04d54e678b93a4c8656ce6fc
[ "2007年五年级竞赛创新杯" ]
2
single_choice
从1000到2007的自然数中有奇数个因数的整数有( )个.
[ [ { "aoVal": "A", "content": "10 " } ], [ { "aoVal": "B", "content": "11 " } ], [ { "aoVal": "C", "content": "12 " } ], [ { "aoVal": "D", "content": "13 " } ] ]
[ "拓展思维->拓展思维->数论模块->完全平方数->偶指奇因->奇因" ]
[ "若为$$n\\textgreater1$$的整数,则$$n=p_{1}^{{{\\alpha }_{1}}}p_{2}^{{{\\alpha }_{2}}}\\cdots p_{r}^{{{\\alpha }_{r}}}$$为质因数分解式,其中$${{p}_{1}} \\textless{} {{p}_{2}} \\textless{} \\cdots \\textless{} {{p}_{r}}$$为质数,所以$$n$$的因数个数为$$d\\left( n \\right)=\\left( {{\\alpha }_{1}}+1 \\right)\\cdots \\left( {{\\alpha }_{r}}+1 \\right)$$,因此$$d\\left( n \\right)$$为奇数时,$${{\\alpha }_{1}}\\text{,}\\alpha {}_{2}\\text{,}\\cdots \\text{,}{{\\alpha }_{r}}\\text{,}$$均为偶数,$$n$$为完全平方数,反过来也成立. $$1000$$到$$2007$$中完全平方数有$$13$$个,即$${{32}^{2}}=1024\\text{,}{{33}^{2}}\\text{,}{{34}^{2}}\\text{,}\\cdots \\text{,}{{44}^{2}}=1936\\left( {{45}^{2}}=2025\\textgreater2007 \\right)$$,从而$$1000$$到$$2007$$中有奇数个因数的整数有$$13$$个. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1924
984077c7a7314eadb8f80d45e8f4c266
[ "2017年全国美国数学大联盟杯小学中年级三年级竞赛初赛第40题" ]
1
single_choice
约翰的钱比吉尔多$$20$$美元,他们两个总共有$$40$$美元.请问约翰有多少美元?
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$40$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和差问题->二量和差问题->明和明差" ]
[ "$$(40+20)\\div 2=30$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3135
129728b71137438c948bd0243da469aa
[ "2016年全国美国数学大联盟杯小学中年级三年级竞赛初赛" ]
3
single_choice
在小镇大学里,学生们的专业是音乐、美术,或两者.如果有$$500$$个学生是音乐专业,$$600$$个学生是美术专业,$$300$$个学生是音乐和美术专业,那么大学里有多少个学生?
[ [ { "aoVal": "A", "content": "$$500$$ " } ], [ { "aoVal": "B", "content": "$$800$$ " } ], [ { "aoVal": "C", "content": "$$1000$$ " } ], [ { "aoVal": "D", "content": "$$1400$$ " } ] ]
[ "知识标签->数学思想->逆向思想" ]
[ "$$500+600-300=800$$个. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
815
77039fdd8845426cb8418fba4f8de31d
[ "2017年全国华杯赛小学高年级竞赛决赛" ]
2
single_choice
不超过$$100$$的所有质数的乘积,减去不超过$$100$$的所有个位数字为$$3$$和$$7$$的质数的乘积,所得差的个位数字为.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ], [ { "aoVal": "E", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "不超过$$100$$的所有质数包含$$2$$、$$5$$, 所以乘积个位一定为$$0$$. 不超过$$100$$的所有个位数字为$$3$$或$$7$$的质数: $$3$$、$$7$$、$$13$$、$$17$$、$$23$$、$$37$$、$$43$$、 $$47$$、$$53$$、$$67$$、$$73$$、$$83$$、$$97$$,$$3\\times7$$的个位为$$1$$, 那么不超过$$100$$的所有个位数字为$$3$$或$$7$$的质数的乘积个位是$$3$$, 差的个位是$$7$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2642
3b0251d5540f42d3bffe820bd1ee6b9e
[ "2017年第17届湖北武汉世奥赛五年级竞赛决赛第7题" ]
2
single_choice
任选$$3$$个不同的数字,按从大到小的顺序排成一个数,再按从小到大的顺序排成一个数,用大数减去小数(如$$1$$,$$2$$,$$0$$,就用$$210-12=198$$),用所得结果的三位数重复上述过程,最后陷入的``数字黑洞''是.
[ [ { "aoVal": "A", "content": "$$123$$ " } ], [ { "aoVal": "B", "content": "$$495$$ " } ], [ { "aoVal": "C", "content": "$$594$$ " } ], [ { "aoVal": "D", "content": "$$954$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$123$$、$$198$$、$$792$$、$$693$$、$$594$$、$$495$$、$$495$$、$$495$$,可以发现选项的$$4$$个数字都会陷入$$495$$的数字黑洞,所以数字黑洞是$$495$$.故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1384
fa8dbd7052d7484b8a0483d64ba1b29c
[ "2006年第4届创新杯四年级竞赛初赛B卷第4题" ]
1
single_choice
$$\underbrace{3\times 3\times \cdots \times 3}_{2006个3}$$减去$$\underbrace{7\times 7\times \cdots \times 7}_{100个7}$$,得数的个位数字是.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为$${{3}^{n}}$$的个位数字是$$3$$,$$9$$,$$7$$,$$1$$四个一循环,$$2006\\div 4=501$$(组)$$\\cdots \\cdots 2$$(个), 所以$${{3}^{2006}}$$个位数字和$${{3}^{2}}$$的个位数字是相同的,即为$$9$$; 因为$${{7}^{n}}$$的个位数字是$$7$$,$$9$$,$$3$$,$$1$$四个一循环,$$100\\div 4=25$$, 所以$${{7}^{100}}$$个位数字和$${{7}^{4}}$$的个位数字是相同的,即为$$1$$; 所以$$\\underbrace{3\\times 3\\times \\cdots \\times 3}_{2006个3}$$减去$$\\underbrace{7\\times 7\\times \\cdots \\times 7}_{100个7}$$,得数的个位数字是$$8$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1862
d6f77137933d429dbb1f9262b75bd41f
[ "2017年希望杯四年级竞赛初赛" ]
2
single_choice
今年,小军$$5$$岁,爸爸$$31$$岁,再过( )年,爸爸的年龄是小军的$$3$$倍。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->差倍->两量差倍->整数差倍" ]
[ "解:父子年龄差是:$$31-5=26$$(岁), 爸爸的年龄是小军的$$3$$倍时, 小军的年龄是:$$26\\div \\left( 3-1 \\right)$$ $$=26\\div 2$$ $$=13$$(岁), $$13-5=8$$(年), 则再过$$8$$年,爸爸的年龄是小军的$$3$$倍。 故答案为:$$8$$。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2532
1ad716bfab1d43f59d320639344be56f
[ "2004年五年级竞赛创新杯", "2004年第2届创新杯五年级竞赛初赛第1题" ]
1
single_choice
一个数除以一个两位小数,如果把除数去掉小数点,把被除数缩小$$10$$倍,那么商的变化情况是( ).
[ [ { "aoVal": "A", "content": "扩大$$10$$倍 " } ], [ { "aoVal": "B", "content": "缩小$$10$$倍 " } ], [ { "aoVal": "C", "content": "扩大$$1000$$倍 " } ], [ { "aoVal": "D", "content": "缩小$$1000$$倍 " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->小数加减->小数加减巧算之位值原理" ]
[ "把除数为两位小数的小数点去掉,那么除数扩大了$$100$$倍,商就会缩小$$100$$倍.又把被除数缩小$$10$$倍,那么商又缩小了$$10$$倍,一共缩小了$$1000$$倍,选D. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1
1be042552e18453d8fcc5111d611feca
[ "2013年中环杯三年级竞赛决赛" ]
0
single_choice
星期天,小军帮助妈妈做一些家务。各项家务花的时间为:叠被子$$3$$分钟,洗碗$$8$$分钟,用洗衣机洗衣服$$30$$分钟,晾衣服$$5$$分钟,拖地板$$10$$分钟,削土豆皮$$12$$分钟。 想一想:以上事件中哪些是必须要按顺序完成的?
[ [ { "aoVal": "A", "content": "叠被子$$-$$洗碗 " } ], [ { "aoVal": "B", "content": "用洗衣机洗衣服$$-$$晾衣服 " } ], [ { "aoVal": "C", "content": "拖地板$$-$$削土豆皮 " } ], [ { "aoVal": "D", "content": "洗碗$$-$$晾衣服 " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->统筹规划->简单时间统筹问题->时间总和问题" ]
[ "解: 先用洗衣机洗衣服,然后晾衣服。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1397
3a9262421a564fbfa124e139ef8e3c10
[ "2018年IMAS小学高年级竞赛(第一轮)第7题3分" ]
2
single_choice
百货商店运来$$300$$双球鞋,分别装在$$2$$个木箱、$$9$$个纸箱里,且每个木箱所装的球鞋数量都相同、每个纸箱所装的球鞋数量也都相同.若$$3$$个纸箱所装的球鞋数量与$$1$$个木箱所装的球鞋数量一样,请问每个木箱装多少双球鞋.
[ [ { "aoVal": "A", "content": "$$24$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$45$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ], [ { "aoVal": "E", "content": "$$100$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->双归一问题" ]
[ "因为$$3$$个纸箱所装的球鞋数量与$$1$$个木箱所装的球鞋数量一样.所以$$9$$个纸箱所装的球鞋数量与$$9\\div 3=3$$个木箱所装的球鞋数量一样.因此$$300$$双球鞋相当于装在$$2+3=5$$个木箱中.故每个木箱装$$300\\div5=60$$双球鞋. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1321
47611c3394d74d208cbc8b2f7d4653fe
[ "2012年IMAS小学高年级竞赛第一轮检测试题第5题3分" ]
2
single_choice
小明沿着马路的一侧以匀速跑步,马路上相邻两根电线杆之间的距离相等,他从第$$1$$根电线杆开始跑到第$$5$$根电线杆用了$$2$$分钟,他继续以此速度向前跑,当他跑到第$$n$$根电线杆时就理科折返原出发处.若小明全程共用了$$12$$分钟,请问$$n$$之值为何?
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ], [ { "aoVal": "E", "content": "$$13$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为小明以$$2$$分钟从第$$1$$根电线杆开始跑到第$$5$$根电线杆共跑了$$4$$个间隔,所以$$4$$分钟可以跑到第$$9$$根电线杆,$$6$$分钟可以跑到第$$13$$根电线杆. 故$$n=13$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3374
a4649d06e9034dada9ccd29418bcde19
[ "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第6题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第6题3分", "2020年第24届YMO四年级竞赛决赛第6题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第6题3分", "2019年第24届YMO四年级竞赛决赛第6题3分" ]
1
single_choice
$$1986$$的数字和是$$1+9+8+6=24$$,小于$$2020$$的四位数中数字和等于$$24$$的数共有个.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->思想->分类讨论思想" ]
[ "小于$$2000$$的四位数千位数字是$$1$$,要它数字和为$$24$$,只需其余三位数字和是$$23$$,因为十位、个位数字和最多为$$9+9=18$$,因此,百位数字至少是$$5$$,于是: 百位为$$5$$时,只有$$1599$$一个; 百位为$$6$$时,只有$$1689$$、$$1698$$两个; 百位为$$7$$时,只有$$1779$$、$$1788$$、$$1797$$三个; 百位为$$8$$时,只有$$1869$$、$$1878$$、$$1887$$、$$1896$$四个; 百位为$$9$$时,只有$$1959$$、$$1968$$、$$1977$$、$$1986$$、$$1995$$五个; 总计共$$1+2+3+4+5=15$$ (个). 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2978
c06aa0e5e2fe4e12aac2579bcfaadc94
[ "2014年全国迎春杯四年级竞赛复赛第4题" ]
2
single_choice
一个$$12$$个数的等差数串,相邻两数的差是$$2$$,且前$$8$$个数的和等于后$$4$$个数的和,那么,这个数串的第二个数是.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "拓展思维->能力->抽象概括" ]
[ "根据题意得$$({{a}_{1}}+{{a}_{8}})\\times 8\\div 2=({{a}_{9}}+{{a}_{12}})\\times4\\div 2$$,因为$${{a}_{8}}={{a}_{1}}+14$$,$${{a}_{9}}={{a}_{1}}+16$$,$${{a}_{12}}={{a}_{1}}+22$$, 所以$$({{a}_{1}}+{{a}_{1}}+14)\\times 8\\div2=({{a}_{1}}+16+{{a}_{1}}+22)\\times 4\\div 2$$,解得$${{a}_{1}}=5$$,因此$${{a}_{2}}=5+2=7$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2697
3bf37d80a08a489a828df1c93dbb5283
[ "2011年第7届全国新希望杯小学高年级五年级竞赛A卷第6题" ]
1
single_choice
已知$$x=1+12+123+1234+\cdots +123456789$$,$$x$$的后三位数是(~ ).
[ [ { "aoVal": "A", "content": "$$105$$ " } ], [ { "aoVal": "B", "content": "$$205$$ " } ], [ { "aoVal": "C", "content": "$$305$$ " } ], [ { "aoVal": "D", "content": "$$405$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数加法运算->加法横式" ]
[ "只用计算末三位数字和为$$1+12+123+234+345+456+567+678+789=3205$$,故答案为$$205$$,选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3245
554a5f964b724f51a0f4cc9a738300ae
[ "2013年IMAS小学中年级竞赛第二轮检测试题第3题4分" ]
2
single_choice
礼品店出售三种不同价格的礼品,售价分别是$$30$$元、$$60$$元、$$90$$元;另外还有三种不同款式的礼盒,售价分别是$$20$$元、$$50$$元、$$80$$元.小英想要购买一份礼品与一个礼盒,请问她支付的款项共有多少种不同的可能金额?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "依次枚举,$$30+20=50$$(元),$$30+50=80$$(元),$$30+80=110$$(元),$$60+80=140$$(元),$$90+80=170$$(元),共$$5$$种. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1476
c33e19e0f74c480cafd9c60f0a7403a9
[ "2012年第10届全国创新杯小学高年级六年级竞赛第4题4分" ]
1
single_choice
某次知识竞赛共$$5$$道题,全部$$52$$人,答对一道得$$1$$分,已知全部共得$$181$$分,每人至少得$$1$$分,且得$$1$$分的有$$7$$人,得$$2$$分的和得$$3$$分的人一样多,得$$5$$分的人有$$6$$人,则得$$4$$分的有(~ ~ ~ )人.
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$30$$ " } ], [ { "aoVal": "C", "content": "$$31$$ " } ], [ { "aoVal": "D", "content": "$$35$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->不定方程解应用题" ]
[ "错误的题共有$$260-181=79$$题,假设得$$2$$分的和得$$3$$分的为$$a$$人,得$$4$$分的为$$b$$人,可以得到 $$79=28+5a+b$$ 有$$5a+b=51$$,只有$$31$$满足. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2132
06691232fb3c4b8c95a2421e5e1a6581
[ "2015年第20届全国华杯赛小学中年级四年级竞赛初赛A卷第5题10分" ]
2
single_choice
一只旧钟的分针和时针重合一次,需要经过标准时间$$66$$分钟,那么,这只旧钟的$$24$$小时比标准时间的$$24$$小时( ~ ~ ~).
[ [ { "aoVal": "A", "content": "快$$12$$分 " } ], [ { "aoVal": "B", "content": "快$$6$$分 " } ], [ { "aoVal": "C", "content": "慢$$6$$分 " } ], [ { "aoVal": "D", "content": "慢$$12$$分 " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->坏钟问题" ]
[ "时针速度为每分钟$$0.5$$度,分针速度为每分钟$$6$$度.分钟每比时针多跑一圈,即多跑$$360$$度,时针分针重合一次.经过$$\\frac{360}{6-0.5}=\\frac{720}{11}$$分钟,旧钟时针分针重合一次,需要经过标准时间$$66$$分钟;则旧钟的$$24$$小时,相当于标准时间的$$\\frac{24\\times 60}{\\frac{720}{11}}\\times 66=1452$$分钟,所以比标准时间$$24$$小时对应的$$24\\times 60=1440$$分钟多了$$1452-1440=12$$分钟,即慢了$$12$$分钟. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3365
660c2b576d964e37ac7988bc824a99d8
[ "2021年第8届鹏程杯四年级竞赛初赛第23题4分" ]
1
single_choice
按英国人的记法,$$2021$$年$$5$$月$$15$$日记作$$5-15-2021$$;按美国人的记法,$$2021$$年$$5$$月$$15$$日记作$$15-5-2021$$.那么,$$2021$$年全年中共有天会让英、美两国人在记法上产生误会.
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$66$$ " } ], [ { "aoVal": "C", "content": "$$132$$ " } ], [ { "aoVal": "D", "content": "$$144$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "日期$$\\leqslant 12$$的都会产生误会,$$12\\times12=144$$天,但日期和月份相同时不会产生误会,这样的时间共有$$12$$天,所以共有$$144-12=132$$天. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2025
cac914d997734af691f9088746126770
[ "2019年第24届YMO二年级竞赛决赛第1题3分" ]
1
single_choice
$$42$$个小朋友排成一队去秋游,从排头往后数,小$$Y$$是第$$22$$个,从排尾往前数,小$$M$$是第$$22$$个,小$$Y$$和小$$M$$中间有个人.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据题意分析可知,小$$Y$$后面有$$42-22=20$$(人),$$22-20-1=1$$(人).那么小$$M$$应该在小$$Y$$的正前方,所以小$$Y$$和小$$M$$之间有$$0$$个人. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3139
055e25a19b7a44c2be01bd59d38281e7
[ "1993年六年级竞赛创新杯" ]
2
single_choice
有$$7$$个相同的小球放入$$4$$个不同的盒子中,每个盒子中至少放一个球,则共有~\uline{~~~~~~~~}~种不同的放法。
[ [ { "aoVal": "A", "content": "15 " } ], [ { "aoVal": "B", "content": "18 " } ], [ { "aoVal": "C", "content": "20 " } ], [ { "aoVal": "D", "content": "24 " } ] ]
[ "拓展思维->拓展思维->计数模块->排列组合->组合->插板法->至少1个" ]
[ "插板法,$$\\text{C}_{6}^{3}=20$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2346
12d1164202db451a9afdcd9f8f3f5156
[ "2020年希望杯六年级竞赛(个人赛)第4题", "2020年新希望杯六年级竞赛初赛(个人战)第4题" ]
1
single_choice
【2020新希望杯六年级竞赛初赛】 如果$$x:y=4:7$$,$$z:x=3:5$$,那么$$\left( x+y \right):(z+x)=$$.
[ [ { "aoVal": "A", "content": "$$11:8$$ " } ], [ { "aoVal": "B", "content": "$$33:55$$ " } ], [ { "aoVal": "C", "content": "$$32:55$$ " } ], [ { "aoVal": "D", "content": "$$41:32$$ " } ], [ { "aoVal": "E", "content": "$$55:32$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "已知$$x:y=4:7$$,$$z:x=3:5$$,那么$$y:x=7:4$$,$$x:z=5:3$$, $$y:x=\\left( 7\\times 5 \\right):\\left( 4\\times 5 \\right)=35:20$$,$$x:z=\\left( 5\\times 4 \\right):\\left( 3\\times 4 \\right)=20:12$$, $$y:x:z=35:20:12$$. 假设$$y=35a$$,$$x=20a$$,$$z=12a$$,其中$$a\\ne 0$$. $$x+y=20a+35a=55a$$,$$z+x=12a+20a=32a$$, 那么$$\\left( x+y \\right):\\left( z+x \\right)=55a:32a=55:32$$. 故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2172
2fcd0d323b3f45f8821cca1129b9f648
[ "2018年第22届广东世界少年奥林匹克数学竞赛六年级竞赛初赛第4题6分" ]
1
single_choice
小明家距学校,乘地铁需要$$30$$分钟,乘公交车需要$$50$$分钟.某天小明因故先乘地铁,再换乘公交车.用了$$40$$分钟到达学校,其中换乘过程用了$$6$$分钟,那么这天小明乘坐公交车用了分钟.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ], [ { "aoVal": "E", "content": "$$14$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "乘车时间是$$40-6=34$$分,假设全是地铁是$$30$$分钟,时间差是$$34-30=4$$ 分钟,需要调整到公交推迟$$4$$分钟,地铁和公交的时间比是$$3:5$$,设地铁时间是多份,公交是$$5$$份时间,$$4\\div \\left( 5-3 \\right)=2$$,公交时间为$$5\\times 2=10$$分钟. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
796
95b6ab233a95422eb5436ca98952b58d
[ "2005年五年级竞赛创新杯" ]
1
single_choice
两个整数的最大公因数是15,最小公倍数是360,那么这两个整数的和是( ).
[ [ { "aoVal": "A", "content": "135 " } ], [ { "aoVal": "B", "content": "165 " } ], [ { "aoVal": "C", "content": "180 " } ], [ { "aoVal": "D", "content": "195 " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->两数的最小公倍数" ]
[ "这两个整数的最大公因数为15,可设这两个数分别为15a,15b($$a \\textless{} b$$且$$a\\text{,}b$$互质),.那么$$15\\times a\\times b=360$$,即$$a\\times b=24$$,又$$a\\text{,}b$$互质,则$$\\left( a\\text{,}b \\right)=\\left( 1\\text{,}24 \\right)$$或$$\\left( 3\\text{,}8 \\right)$$.当$$\\left( a\\text{,}b \\right)=\\left( 1\\text{,}24 \\right)$$时,这两个整数的和为$$15\\times 1+15\\times 24=15\\times 25=375$$;当$$\\left( a\\text{,}b \\right)=\\left( 3\\text{,}8 \\right)$$时,这两个整数的和为$$15\\times 3+15\\times 8=15\\times 11=165$$.四个选项中只有B符合结论,故选B " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
409
fb9d6af8865744b5bef8338039700b97
[ "2021年新希望杯一年级竞赛初赛第14题5分" ]
1
single_choice
5、$$5$$只动物排成一排,狗和猫都与鸡相邻,猫和鼠都与兔相邻,那么都与猫相邻.
[ [ { "aoVal": "A", "content": "鼠和鸡 " } ], [ { "aoVal": "B", "content": "鸡和兔 " } ], [ { "aoVal": "C", "content": "兔和狗 " } ], [ { "aoVal": "D", "content": "兔和鼠 " } ], [ { "aoVal": "E", "content": "鼠和狗 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据题意分析可知,狗和猫都与鸡相邻,即鸡的左右两边是猫和狗,又因为猫与老鼠都与兔相邻,所以猫的旁边是兔子和老鼠,兔子和老鼠在猫的同一侧,由此可知,与猫相邻的是鸡和兔. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1308
2c6b6805a61d47ae855ff7d47d61602f
[ "2019年全国小学生数学学习能力测评六年级竞赛复赛第9题3分" ]
0
single_choice
$$0.5$$千克盐溶解在$$20$$千克水中,盐的重量占盐水重量的.
[ [ { "aoVal": "A", "content": "$$\\frac{4}{5}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{5}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{41}$$ " } ], [ { "aoVal": "D", "content": "无选项 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "盐水:$$0.5+20=20.5\\left( \\text{kg} \\right)$$, 盐占盐水:$$0.5\\div 20.5=\\frac{1}{41}$$. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2368
06e50d6771364cae92db23b1b9085966
[ "六年级其它", "2017年河南郑州豫才杯六年级竞赛" ]
1
single_choice
我们定义一种新运算``$$\oplus $$''如下:当$$a\textgreater b$$时,$$a\oplus b=2b-1$$;当$$a\leqslant b$$时,$$a\oplus b=a+1$$.则$$\left( 2\oplus 3 \right)\oplus \left( 5\oplus 4 \right)=$$( ~).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\left( 2\\oplus 3 \\right)=2+1=3$$,$$\\left( 5\\oplus 4 \\right)=2\\times 4-1=7$$,$$\\left( 2\\oplus 3 \\right)\\oplus \\left( 5\\oplus 4 \\right)=3\\oplus 7=3+1=4$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1531
5b09e3f4e9ca49c483d39cfec553d21a
[ "2016年第12届全国新希望杯小学高年级六年级竞赛复赛第4题4分" ]
2
single_choice
某实验小学去年参加$$15$$届``新希望杯''书法大赛的学生中,女生占总数的$$\frac{1}{5}$$,今年参加第$$16$$届``新希望杯''书法大赛的学生比去年增加了$$20 \%$$,其中女生占总数的$$\frac{1}{4}$$,那么今年参加书法大赛的女生总数比去年增加了百分之.
[ [ { "aoVal": "A", "content": "$$49$$ " } ], [ { "aoVal": "B", "content": "$$48$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$51$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->认识单位1" ]
[ "设去年参加比赛的为单位``$$1$$'',女生占$$\\dfrac{1}{5}$$,即女生人数为$$\\dfrac{1}{5}\\times 1=\\dfrac{1}{5}$$人,今年参加比赛的人数增加$$20 \\%$$,则今年参加比赛人数为$$1\\times \\left( 1+20 \\% \\right)=1.2$$,女生占$$\\dfrac{1}{4}$$,则女生人数为$$1.2\\times \\dfrac{1}{4}=0.3$$人.今年比去年增加了$$\\dfrac{\\left( 0.3-\\dfrac{1}{5} \\right)}{\\dfrac{1}{5}}=50 \\%$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3145
8aac50a7519fa10a01519fde4010005d
[ "2016年全国华杯赛小学高年级竞赛初赛第6题" ]
2
single_choice
从自然数$$1$$,$$2$$,$$3$$,\ldots,$$2015$$,$$2016$$.任意取$$n$$个不同的数,要求总能在这$$n$$个不同的数中找到$$5$$个数,它们的数字和相等.那么$$n$$的最小值等于.
[ [ { "aoVal": "A", "content": "$$109$$ " } ], [ { "aoVal": "B", "content": "$$110$$ " } ], [ { "aoVal": "C", "content": "$$111$$ " } ], [ { "aoVal": "D", "content": "$$112$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "$$1$$到$$2016$$中,数字和最大$$28$$, 数字和$$28$$的数只有$$1999$$, 最坏情况:取数字和$$1$$到$$27$$的数各$$4$$个,以及$$1999$$,共$$109$$个数, 再多取一个数就保证有$$5$$个数字和相等,$$n=110$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1085
3cd12ade990e4182af38f6e0e5969ac4
[ "2016年新希望杯六年级竞赛训练题(一)第1题" ]
2
single_choice
小李以每股$$10$$元的相同价格买入$$A$$和$$B$$两只股票共$$1000$$股.此后$$A$$股票先跌$$5 \% $$,$$B$$股票先涨$$5 \% $$再跌$$5 \% $$.若在此期间小李没有再买卖过这两只股票,则现在这$$1000$$股股票的市值是元.~
[ [ { "aoVal": "A", "content": "$$10250$$ " } ], [ { "aoVal": "B", "content": "$$9975$$ " } ], [ { "aoVal": "C", "content": "$$10000$$ " } ], [ { "aoVal": "D", "content": "$$9750$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->经济问题->基本经济概念->已知成本利润求售价" ]
[ "$$10\\times 1000\\times \\left( 1-5 \\% \\right)\\times \\left( 1+5 \\% \\right)=9975$$(元). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1425
7a440e0b1596478fab2214e3249eb5c0
[ "2014年迎春杯三年级竞赛初赛", "2014年迎春杯五年级竞赛初赛" ]
2
single_choice
一辆大卡车一次可以装煤$$2.5$$吨,现在要一次性运走$$48$$吨煤,那么至少需要( )辆这样的大卡车。
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$19$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$21$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->乘除法应用->除法应用" ]
[ "解:$$48\\div 2.5=19.2\\approx 20$$(辆),由实际情况可知需要$$20$$辆。 答:至少需要$$20$$辆这样的大卡车。 故选:C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3227
2c6a712cca3448ee9eb2c7e0b570a3b0
[ "2017年第16届湖北武汉创新杯小学高年级六年级竞赛邀请赛训练题(四)" ]
1
single_choice
从$$0\sim 8$$这九个数字中选四个数字组成没有重复的四位数,然后将这些四位数由小到大排列,其中第$$2017$$个四位数是(~ ).
[ [ { "aoVal": "A", "content": "$$2017$$ " } ], [ { "aoVal": "B", "content": "$$6012$$ " } ], [ { "aoVal": "C", "content": "$$7012$$ " } ], [ { "aoVal": "D", "content": "$$8120$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->组数问题->有特殊要求的组数问题" ]
[ "组成的四位数一共有$$8\\times 8\\times 7\\times 6=2688$$(个),其中千位为$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$、$$7$$、$$8$$的各有$$336$$个.$$2017336\\times 6=1$$(个),即千位为$$7$$的第$$1$$个数为$$7012$$,选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
922
dc206ee05da946a1bc30fb8f13ec072b
[ "2017年迎春杯五年级竞赛决赛二试第2题10分", "2017年迎春杯六年级竞赛决赛二试第3题10分" ]
1
single_choice
如果两个正整数$$A$$和$$B$$满足以下条件: ① $$A(A+1)$$是$$B(B+1)$$的倍数; ②$$ A$$和$$(A+1)$$都不是$$B$$或者$$(B+1)$$的倍数; 那么,$$A+B$$的最小值是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$34$$ " } ], [ { "aoVal": "B", "content": "$$43$$ " } ], [ { "aoVal": "C", "content": "$$44$$ " } ], [ { "aoVal": "D", "content": "$$49$$ " } ], [ { "aoVal": "E", "content": "$$55$$ " } ] ]
[ "拓展思维->能力->逻辑分析", "Overseas Competition->知识点->数论模块" ]
[ "$$A$$、$$A+1$$、$$B$$、$$B+1$$均不为质数;也不能是质数的$$n$$次方.所以,$$B$$只能是$$14$$.($$B$$为$$6$$、$$10$$时,$$B+1$$都是质数),此时$$B+1$$为$$15$$,$$B(B+1)$$含有质因数$$2$$、$$3$$、$$5$$、$$7$$;最小符合条件的$$A$$为$$20$$,所以,$$A+B$$最小值为$$34$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
697
2d3025f443d34f3da1ad9e442821c410
[ "2013年第12届上海小机灵杯小学高年级五年级竞赛初赛第5题1分" ]
0
single_choice
古时候的原始人捕猎,捕到一只野兽对应一根手指.等到$$10$$根手指用完,就在绳子上打一个结,这就是运用现在的数学中的.
[ [ { "aoVal": "A", "content": "二进制计数法 " } ], [ { "aoVal": "B", "content": "五进制计数法 " } ], [ { "aoVal": "C", "content": "十进制计数法 " } ] ]
[ "拓展思维->七大能力->实践应用", "课内体系->七大能力->实践应用" ]
[ "古时候的原始人捕猎运用现在的数学中的十进制计数法. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
121
b01fce4bd8934e8291af3a9a8b89f3c5
[ "2017年第23届浙江杭州华杯赛小学高年级竞赛卓学堂高端备考活动第7题", "2014年全国中环杯五年级竞赛决赛第7题" ]
2
single_choice
有 $$15$$位选手参加一个围棋锦标赛,每两个人之间需要比赛一场. 赢一场得 $$2$$分,平一场各得$$1$$分,输一场得 $$0$$分. 如果一位选手的得分不少于 $$20$$分,他就能获得一份奖品. 那么,最多有位选手能够获得奖品.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->体育比赛->2-1-0 积分制" ]
[ "容易知道,这 $$15$$ 位选手一共需要比赛$$C_{15}^{2}=15\\times 7$$ (场),产生$$15\\times 7\\times 2=210$$ (分), 所以理论上最多有$$\\left[ \\frac{210}{20} \\right]=10$$ (人)能够拿到奖品.接下来,我们要证明,不可能有 $$10$$ 人同时拿到 $$20$$ 分或以上. 假设$${{A}_{1}}.{{A}_{2}}.\\cdots {{A}_{15}}$$ 同时拿到$$20$$ 分或以上,也就意味着$${{A}_{11}}{{A}_{12}}\\cdots {{A}_{15}}$$ 一共只能拿到$$10$$ 分或以下.考虑到$${{A}_{11}}{{A}_{12}}\\cdots {{A}_{15}}$$之间有$$C_{5}^{2}=10$$ (场)比赛,产生了$$20$$ 分的总分,所以不可能只得到$$10$$ 分或以下. 至此,理论上最多只能有 $$9$$ 个人,接下来举例:$${{A}_{1}}.{{A}_{2}}.\\cdots {{A}_{9}}$$互相之间全部打平,然后$${{A}_{1}}.{{A}_{2}}.\\cdots {{A}_{9}}$$每个人都战胜了$${{A}_{11}}{{A}_{12}}\\cdots {{A}_{15}}$$中的所有人,这样$${{A}_{1}}.{{A}_{2}}.\\cdots {{A}_{9}}$$每个人都可以得$$6\\times 2+8=20$$ (分). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
224
635e4b4ce28b48fc946665dd738e5666
[ "2021年新希望杯一年级竞赛初赛第14题5分" ]
1
single_choice
$$5$$只动物排成一排,狗和猫都与鸡相邻,猫和鼠都与兔相邻,那么都与猫相邻.
[ [ { "aoVal": "A", "content": "鼠和鸡 " } ], [ { "aoVal": "B", "content": "鸡和兔 " } ], [ { "aoVal": "C", "content": "兔和狗 " } ], [ { "aoVal": "D", "content": "兔和鼠 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "根据题意分析可知,狗和猫都与鸡相邻,即鸡的左右两边是猫和狗,又因为猫与老鼠都与兔相邻,所以猫的旁边是兔子和老鼠,兔子和老鼠在猫的同一侧,由此可知,与猫相邻的是鸡和兔. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3371
8db0248f21304005bcf6fbc8bebe60aa
[ "2012年IMAS小学高年级竞赛第二轮测试真题第3题" ]
2
single_choice
有六对夫妇共$$12$$个人参加宴会,在宴会上,除了自己的妻子之外,每位男宾都与其他每人握手一次,女宾与女宾之间不握手,请问这$$12$$个人之间总共握手了多少次?
[ [ { "aoVal": "A", "content": "$$40$$ " } ], [ { "aoVal": "B", "content": "$$45$$ " } ], [ { "aoVal": "C", "content": "$$48$$ " } ], [ { "aoVal": "D", "content": "$$51$$ " } ], [ { "aoVal": "E", "content": "$$60$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->排列组合->组合->组合的基本应用" ]
[ "用排除法,$$12$$个人共握手$$C_{12}^{2}=12\\times 11\\div 2=66$$(次) 男宾与妻子握手$$6$$次, 女宾与女宾握手$$\\text{C}_{6}^{2}=6\\times 5\\div 2=15$$(次) ∴$$66-6-15=45$$(次). ", "<p>用排除法,$$12$$个人共握手$$12\\times 11\\div 2=66$$(次)</p>\n<p>男宾与妻子握手$$6$$次,</p>\n<p>女宾与女宾握手$$6\\times 5\\div 2=15$$(次)</p>\n<p>&there4;$$66-6-15=45$$(次).</p>" ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3252
24eb63876d7744cbbfebb2a7c0c2de00
[ "2016年第14届全国创新杯五年级竞赛初赛第9题" ]
2
single_choice
不妨称各位数字之和为$$7$$的整数为``魔力数'',如$$115$$,$$1312$$等就是魔力数.那么随手写出一个三位数,恰好是``魔力数''的可能性是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{45}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{75}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{7}{225}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{8}{225}$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "三位数一共有$$900$$个,满足条件的魔力数有$$\\text{C}_{7+2-1}^{2}=28$$个,则$$\\frac{28}{900}=\\frac{7}{225}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
354
5ccc08994f484a97b33b51f893a05820
[ "2015年第13届全国创新杯小学高年级五年级竞赛初赛第10题" ]
2
single_choice
将``$$OPQRST$$''连续接下去可得到;``$$OPQRSTOPQRST\cdot \cdot \cdot $$'',从左至右第$$2015$$个字母应该是.
[ [ { "aoVal": "A", "content": "$$S$$ " } ], [ { "aoVal": "B", "content": "$$Q$$ " } ], [ { "aoVal": "C", "content": "$$O$$ " } ], [ { "aoVal": "D", "content": "$$T$$ " } ] ]
[ "知识标签->拓展思维->组合模块->字母规律->数字与字母结合" ]
[ "$$2015\\div 6\\cdot \\cdot \\cdot \\cdot \\cdot \\cdot 5$$,则$$2015$$个数应为$$S$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2087
e6d14d29515f4a639f199531722abb37
[ "2016年新希望杯六年级竞赛训练题(五)第3题" ]
1
single_choice
自来水厂有一个水净化池,在某一净化过程中,需同时打开$$3$$根进水管和$$2$$根出水管,一根进水管每小时能进$$50$$立方米的水,一根出水管每小时能出$$80$$立方米的水.水池中原本有$$200$$立方米的水,当水池中的水全部净化完停止进水,在这个过程中国,水池一共出水(~ )立方米.~
[ [ { "aoVal": "A", "content": "$$1600$$ " } ], [ { "aoVal": "B", "content": "$$1800$$ " } ], [ { "aoVal": "C", "content": "$$3200$$ " } ], [ { "aoVal": "D", "content": "$$3600$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->进水与排水问题" ]
[ "每小时水池的水减少$$2\\times 80-3\\times 50=10$$立方米,出完水需要的时间是$$200\\div 10=20$$小时,共出水$$20\\times 2\\times 80=3200$$立方米. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1898
938ce8f5f77f463e92152cca04c36976
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛决赛第4题5分" ]
0
single_choice
云云做了$$18$$朵花,芳芳做了$$8$$朵,云云给芳芳朵花,两人的花就同样多了.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "云云比芳芳多:$$18-8=10$$(朵), 所以要使两人一样多,应将多余的$$10$$朵花一半分, 即每人$$5$$朵,所以云云给芳芳$$5$$朵. 故选择$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2674
683e2de76d25496aa07892c7c46f00a9
[ "2014年全国迎春杯三年级竞赛初赛第1题" ]
1
single_choice
【数学人教版】下列算式结果为$$500$$的是.
[ [ { "aoVal": "A", "content": "$$5\\times99+1$$ " } ], [ { "aoVal": "B", "content": "$$100+25\\times4$$ " } ], [ { "aoVal": "C", "content": "$$88\\times4+37\\times4$$ " } ], [ { "aoVal": "D", "content": "$$100\\times0\\times5$$ " } ] ]
[ "知识标签->课内知识点->数与运算->混合运算->整数四则混合运算" ]
[ "A等于$$5\\times(100-1)+1=500-5+1=496$$,$$B$$等于$$100+100=200$$ ,$$C$$等于$$(88+37)\\times4=125\\times 4=500$$ ,$$D$$等于$$0$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
902
822ac40360674c1b8ef66114d4f15b7e
[ "2014年第15届上海中环杯小学高年级五年级竞赛初赛第18题" ]
3
single_choice
一个五位数$$\overline{ABCDE}$$是$$2014$$的倍数,并且$$\overline{CDE}$$恰好有$$16$$个因数,则$$\overline{ABCDE}$$的最小值是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$10070$$ " } ], [ { "aoVal": "B", "content": "$$16112$$ " } ], [ { "aoVal": "C", "content": "$$22154$$ " } ], [ { "aoVal": "D", "content": "$$24168$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->组合模块最值问题->枚举型最值问题" ]
[ "最值问题从极端情况出发,既是五位数又是$$2014$$的倍数,最小为$$10070$$;所以$$\\overline{ABCDE}=2014\\times k$$,且$$\\overline{CDE}$$有$$16$$个因数,$$2014\\times k=2014\\times 5+2014\\times n=10070+2014n$$,因此$$\\overline{CDE}=70+14n$$.要求当$$\\overline{CDE}$$有$$16$$个因数时,$$n$$的最小值是几,$$\\overline{CDE}=14\\left( n+5 \\right)=2\\times 7\\times \\left( n+5 \\right)$$从小到大发现$$n=7$$时满足条件,此时$$\\overline{CDE}={{2}^{3}}\\times 3\\times 7$$一共有$$16$$个因数,此时最小值为$$2014\\times \\left( 5+7 \\right)=24168$$. 最值问题从极端情况出发,既是五位数又是$$2014$$的倍数,最小为$$10070$$; 约数个数逆应用,$$16=16=8\\times 2=4\\times 4=4\\times 2\\times 2=2\\times 2\\times 2\\times 2$$,分解质因数后指数可能是( $$15 $$),($$7$$,$$1$$),($$3$$,$$3$$),($$3$$,$$1$$,$$1$$ ),($$1$$,$$1$$,$$1$$,$$1$$ )这几组. $$10070$$,$$70=2\\times 5\\times 7$$,舍 $$12084$$,$$84={{2}^{2}}\\times 3\\times 7$$,舍 $$14098$$,$$98={{2}^{{}}}\\times {{7}^{2}}$$,舍 $$16112$$,$$112={{2}^{4}}\\times 7$$,舍 $$18126$$,$$126=2\\times {{3}^{2}}\\times 7$$,舍 $$20140$$,$$140={{2}^{2}}\\times 5\\times 7$$,舍 $$22154$$,$$154=2\\times 7\\times 11$$,舍 $$24168$$,$$168={{2}^{3}}\\times 3\\times 7$$,符合 $$\\overline{ABCDE}$$最小为$$24168$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1758
6186c87759f946ed8872fbade64a9e93
[ "2014年IMAS小学中年级竞赛第一轮检测试题第6题3分" ]
1
single_choice
体育课上,$$30$$位同学排成一排,从$$1$$开始依序报数后,老师说:``报数为$$1$$号到$$10$$号的同学向前走一步,报数为$$20$$号至$$30$$号的同学向后退一步.''请问还有多少位同学原地不动?
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ], [ { "aoVal": "E", "content": "$$21$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "因为$$11$$到$$19$$号同学原地不动,所以还有$$19-11+1=9$$位同学原地不动.故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2268
65d7b0141474413884c22285467119bd
[ "2016年创新杯小学高年级六年级竞赛训练题(一)第2题" ]
2
single_choice
汽车从甲地到乙地,先行上坡,后行下坡,共用$$9.4$$小时.如果甲、乙两地相距$$450$$千米,上坡车速为每小时$$45$$千米,下坡车速为每小时$$50$$千米,且返回时上坡和下坡速度保持不变,那么原路返回要(~ ~ ~ )小时.
[ [ { "aoVal": "A", "content": "$$9.4$$ " } ], [ { "aoVal": "B", "content": "$$9.5$$ " } ], [ { "aoVal": "C", "content": "$$9.6$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人简单行程问题" ]
[ "设原来上坡用了$$x$$小时,$$45x+50\\left( 9.4-x \\right)=450$$,解得$$x=4$$,那么原来上坡是$$45\\times 4=180$$千米,下坡就是$$450-180=270$$千米,返回时下坡变为上坡,上坡变为下坡,所以返回时时间是$$\\frac{270}{45}+\\frac{180}{50}=9.6$$(小时). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1833
9ba5b7bf91d74f4180ce8c2aff8e8b17
[ "2020年广东广州羊排赛四年级竞赛第18题10分" ]
2
single_choice
薇儿参加古诗词大赛,共$$12$$道题.答对一题得$$5$$分,不答或答错一题倒扣$$2$$分.如果薇儿最终分数是$$39$$分,那么她答对了~\uline{~~~~~~~~~~}~题?
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题->方程法解鸡兔同笼" ]
[ "根据题目设她答对了$$x$$道题, 因为共$$12$$道题,所以答错了$$(12-x)$$道题,答对一题得$$5$$分,不答或答错一题倒扣$$2$$分. 薇儿最终分数是$$39$$分,可以列方程为:$$5x-(12-x)\\times 2=39$$, 解得$$x=9$$,所以她答对了$$9$$题. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1126
18b70ec3135a475da60039e7e22b4d09
[ "2015年第2届广东深圳鹏程杯四年级竞赛第6题8分" ]
2
single_choice
爸爸今年的岁数是儿子小明今年岁数的$$3$$倍还大$$4$$岁;再过六年,爸爸的岁数是小明岁数的$$2$$倍还大$$10$$岁.则小明今年是~\uline{~~~~~~~~~~}~岁.
[ [ { "aoVal": "A", "content": "在答题卡上提交 " } ] ]
[ "知识标签->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题->方程法解倍数问题" ]
[ "设小明今年是$$x$$岁,则爸爸今年是$$(3x+4)$$岁,再过$$6$$年爸爸就是$$[(3x+4)+6]$$岁, 而六年后,小明长大了$$6$$岁,爸爸也长大了$$6$$岁, 因此,六年后,爸爸年龄是$$[2(x+6)+10]$$岁. 据题意得到$$(3x+4)+6=2(x+6)+10$$,解得$$x=12$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
698
28ff3d82e4c541ffbc5e26b3a7201841
[ "2014年第10届全国新希望杯小学高年级五年级竞赛复赛第1题" ]
1
single_choice
在$$1.5$$,$$1.6$$,$$2.1$$,$$2.3$$这组数据中加一个数,使这组数据的中位数是$$1.9$$,则下列选项中,满足条件的是(~~~ ).
[ [ { "aoVal": "A", "content": "$$1.9$$ " } ], [ { "aoVal": "B", "content": "$$1.6$$ " } ], [ { "aoVal": "C", "content": "$$1.7$$ " } ], [ { "aoVal": "D", "content": "$$2.1$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->奇数与偶数->奇数与偶数的认识" ]
[ "添加一个数后这列数有奇数个,中位数是最中间的数(由小到大排),则添加的数为$$1.9$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
24
02bc475624ea46789fe45d609d85da27
[ "竞赛" ]
2
single_choice
理发店里同时来了$$A$$、$$B$$、$$C$$三个顾客,只有一个理发师,$$A$$理板寸需要$$7$$分钟,$$B$$理光头需要$$10$$分钟,$$C$$烫卷发需要$$40$$分钟。合理安排这三个人的理发顺序,他们三人所花的时间总和会有最小值,这个最短的时间是( )分钟。
[ [ { "aoVal": "A", "content": "$$80$$ " } ], [ { "aoVal": "B", "content": "$$85$$ " } ], [ { "aoVal": "C", "content": "$$82$$ " } ], [ { "aoVal": "D", "content": "$$81$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->统筹规划->简单时间统筹问题->时间总和问题" ]
[ "按照$$A$$、$$B$$、$$C$$的顺序理发,最短时间为$$7\\times 3+10\\times 2+40=81$$(分). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
516
cb37d8dcd80746b88558f3d596cb6d01
[ "2018年迎春杯四年级竞赛决赛一试第3题10分" ]
1
single_choice
下列$$5$$道判断题,这$$5$$道题的题干与它们的答案相关,请判断正误: ($$1$$)第$$2$$题的答案是√. ($$2$$)第$$4$$题的答案是$$\times $$. ($$3$$)有$$2$$道题的答案是√. ($$4$$)本题和上一题中至少有$$1$$个√. ($$5$$)第$$2$$、$$3$$题答案一致. 如果这$$5$$道题的答案可以使得题干正确,互不矛盾,那么,请在上面的$$5$$个括号内写出这$$5$$道题的答案.请问:正确的题干序号为:~\uline{~~~~~~~~~~}~(多选题)
[ [ { "aoVal": "A", "content": "(1)(2) " } ], [ { "aoVal": "B", "content": "(3)(4) " } ], [ { "aoVal": "C", "content": "(2)(3)(5) " } ], [ { "aoVal": "D", "content": "(1)(2)(5) " } ], [ { "aoVal": "E", "content": "(5) " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "假设第一句描述是正确的,则根据第一句内容``第$$2$$题的答案是对''可知,第二句的描述也是正确的;同理根据第二句的描述``第$$4$$题的答案是错''可以得到,第四句的描述是错误的;再根据第四句的内容``本题和上一题中至少有$$1$$个对''可知,第三句应该选择错;再结合第二句的结果对和第三句的结果错可知,第五句的描述是错的,所以目前我们的结果是``对对错错错'',那么根据这个结果,第三句的描述``有$$2$$道题的答案是对''这句话就应该是对的,出现了矛盾,则我们一开始的假设是错误的,所以第一句的结果应该是错. 第一句的结果是错,则第一句描述的内容``第$$2$$题的答案是对''是不对的,进而可知第二句描述的内容``第$$4$$题的答案是错''也是错的,也就是说第四句话是对的,然后结合第三句和第五句,如果第三句是对的,那么第五句的描述``第$$2$$题、$$3$$题答案一致''就是错的,所以此时的答案就是``错错对对错'',满足题意;如果第三句是错的,则第五句描述``第$$2$$题、$$3$$题答案一致''就是对的,此时的答案就是``错错错对对'',有两个对的,那就和第三句的描述``有$$2$$道题的答案是对''一致,所以出现了矛盾. 所以最后的答案就是错错对对错. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1947
bc713ea5f64148bf8eaae5d38a26a84c
[ "2012年河南郑州二七区郑州实验外国语中学小升初第25题5分", "2011年北京五年级竞赛" ]
1
single_choice
一项工程,甲单独做需要$$30$$天时间,甲、乙合作需要$$12$$天时间,如果乙单独做需要多少时间?
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$42$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "将整个工程的工作量看作``$$1$$''个单位,那么甲每天完成总量的$$\\frac{1}{30}$$,甲、乙合作每天完成总量的$$\\frac{1}{12}$$,乙单独做每天能完成总量的$$\\frac{1}{12}-\\frac{1}{30}=\\frac{1}{20}$$,所以乙单独做$$1\\div\\frac{1}{20}=20$$天能完成. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1010
12d41a64a30b406894a05f0960ba2eb7
[ "2019年第7届湖北长江杯六年级竞赛复赛A卷第6题3分", "2020年湖北宜昌小升初第15题1分" ]
1
single_choice
一个圆的周长增加$$30 \%$$,这个圆的面积增加$$ \%$$.
[ [ { "aoVal": "A", "content": "$$69$$ " } ], [ { "aoVal": "B", "content": "$$90$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "因为圆的周长增加$$30 \\%$$,所以圆的半径也增加$$30 \\%$$.设圆的半径为$$r$$,则增加后的半径为$$(1+30 \\%)r=1.3r$$,所以原来的圆的面积为$$\\pi {{r}^{2}}$$,半径增加后的圆的面积为$$\\pi {{(1.3r)}^{2}}=1.69\\pi {{r}^{2}}$$,故面积增加$$(1.69\\pi {{r}^{2}}-\\pi {{r}^{2}})\\div \\pi {{r}^{2}}=69 \\%$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
823
acea09fd29724bb4a830ff305f78b3e1
[ "2018年湖北武汉新希望杯小学高年级六年级竞赛训练题(四)第4题" ]
2
single_choice
张老师把$$165$$苹果、$$220$$个梨和$$398$$个桔子平均分给小朋友们,最后剩下$$21$$个苹果、$$4$$个梨和$$38$$个桔子没有分出去.每个小朋友分到了个.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$11$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$165-21=144$$,$$220-4=216$$,$$398-38=360$$,($$144$$,$$216$$,$$260$$)$$=72$$,所以小朋友的人数应该是$$72$$的因数,又$$38\\textgreater36$$,所以人数只能是$$72$$人,$$144\\div 72+216\\div 72+360\\div 72=10$$(个). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2381
137e3827f24741e8a7634ed89996b222
[ "2013年第11届全国创新杯五年级竞赛第7题5分" ]
2
single_choice
已知$$5$$个不同的奇自然数的和为$$85$$,则这五个数中最大数$$M$$的取值范围是(~ ).
[ [ { "aoVal": "A", "content": "$$23\\leqslant M\\leqslant 67$$ " } ], [ { "aoVal": "B", "content": "$$19\\leqslant M\\leqslant 67$$ " } ], [ { "aoVal": "C", "content": "$$21\\leqslant M\\leqslant 69$$ " } ], [ { "aoVal": "D", "content": "$$17\\leqslant M\\leqslant 69$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->中项定理应用" ]
[ "我们尝试考虑最大数$$M$$的最极端情况,当数$$M$$要去的最大值时,其他四个数必须最小,那么分别取$$1$$,$$3$$,$$5$$,$$7$$,此时$$M$$最大值为$$69$$,排除$$A$$、$$B$$选项,为了满足$$M$$是五个数最大的数且最小,那么最好极端的情况应该是这五个数恰好是一个等差的奇数列,根据中项定理易得$$M$$的最小值应为:$$85\\div 5+2+2=21$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2129
02311de791cb45a5aa14946611de9998
[ "2021年第8届鹏程杯四年级竞赛初赛第19题4分" ]
1
single_choice
一列快车和一列慢车相向而行,快车的车长是$$270$$米,慢车的车长是$$360$$米,坐在快车上的人看见慢车驶过的时间是$$12$$秒,那么坐在慢车上的人看见快车驶过的时间是秒.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "速度和$$=360\\div 12=30$$,$$270\\div 30=9$$(秒). 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3111
e24d4a9d03c9443fbe67949ad522a0bb
[ "2013年IMAS小学中年级竞赛第二轮检测试题第1题4分" ]
2
single_choice
将$$86$$除以一个数,商是一位数,余数是$$6$$.请问``除数''不可能是下列哪个选项的数值?
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$30$$ " } ], [ { "aoVal": "D", "content": "$$40$$ " } ], [ { "aoVal": "E", "content": "$$80$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数乘除->整数除法运算->带余除法" ]
[ "$$86\\div 10=8\\cdots \\cdots 6$$,$$\\text{A}$$符合; $$86\\div 20=4\\cdots \\cdots 6$$,$$\\text{B}$$符合; $$86\\div 30=2\\cdots \\cdots 26$$,$$\\text{C}$$不符合; $$86\\div 80=1\\cdots \\cdots 6$$,$$\\text{D}$$符合. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2584
3e7c51268f0e4f708441d991ebff29f1
[ "2012年全国美国数学大联盟杯小学高年级竞赛初赛第33题", "2013年美国数学大联盟杯小学高年级竞赛初赛第33题5分" ]
2
single_choice
现有$$6$$个连续的整数,其中最大的数为$$30$$,若另有$$10$$个连续整数的和恰好等于上述$$6$$个连续整数之和,请求出这$$10$$个连续整数中最大的数?
[ [ { "aoVal": "A", "content": "$$17$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$26$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$6$$个连续的整数的和$$(25+30)\\times6 \\div2=165$$, $$10$$个连续整数最中间$$165\\div5=33=16+17$$, $$17+4=21$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1148
0dba4e79ef67478a881c07e24225b898
[ "2018年全国小学生数学学习能力测评五年级竞赛初赛第7题3分" ]
2
single_choice
某班共买来$$66$$本课外书,把它们分别放在书架上,每次摆放都是下面一层比上面一层多放$$1$$本书,则至多要放的层数为.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->能力->公式记忆->符号化数学原理" ]
[ "根据``每次摆放都是下面一层比上面一层多放$$1$$本书''得知,每层摆放书的数目成等差数列,要求``至多''摆放几层,需要第一层是$$1$$本,第二层是$$2$$本,第三层是$$3$$本$$\\cdots \\cdots $$, 假设摆放$$n$$层,则:$$1+2+3+\\cdots \\cdots +n=\\frac{n(1+n)}{2}$$, $$66=\\frac{n(1+n)}{2}$$. 得$$n=11$$,所以选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
581
0807671281324674a8d28c62ea90ca60
[ "2018年美国数学大联盟杯五年级竞赛初赛第13题5分" ]
0
single_choice
\textbf{(2018 Math league, Primary 5, Question \#13)} Of the following, which is the sum of two consecutive integers? 下列哪个选项是$$2$$个连续整数的和?
[ [ { "aoVal": "A", "content": "$$111111$$ " } ], [ { "aoVal": "B", "content": "$$222222$$ " } ], [ { "aoVal": "C", "content": "$$444444$$ " } ], [ { "aoVal": "D", "content": "$$888888$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "在两个连续整数中,其中一个是双数,一个是单数.一个双数和一个单数的和一定是一个单数,所以两个连续整数的和也定是单数. 在$$\\text{A}$$、$$\\text{B}$$、$$\\text{C}$$、$$\\text{D}$$,$$4$$个选项中,只有$$\\text{A}$$是单数,其余$$3$$个都是双数. 故答案选:$$\\text{A}$$ " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2091
fdd247543f0547ba8232b0e5b695617f
[ "2020年广东广州羊排赛三年级竞赛第14题8分" ]
1
single_choice
某部$$87$$集的电视连续剧,每周日、周一、周四、周五、周六都要播出一集,周二、周三停播.这部剧周一大结局,请问它是周几开播的?
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "四 " } ], [ { "aoVal": "C", "content": "五 " } ], [ { "aoVal": "D", "content": "六 " } ], [ { "aoVal": "E", "content": "日 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "$$87$$集的电视连续剧在某个星期日开播,每周日、周一、周四、周五、周六都要播一集,五天一周期,$$87\\div 5=17$$(周)$$\\cdots \\cdots 2$$(天),所以最后一集在周一播出,选项$$\\text{A}$$正确. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
637
d9cafef543634b12b74e80f5620670dd
[ "2016年全国世奥赛竞赛A卷第3题", "2016年第16届世奥赛六年级竞赛决赛第3题" ]
2
single_choice
美国人口普查局报告说:美国东部时间$$2012$$年$$8$$月$$14$$日下午$$2$$时$$20$$分,美国的人口数字升至$$314159265$$(三亿一千四百一十五万九千两百六十五)人,恰好相当于圆周率($$ \pi $$)的一亿倍,更为神奇的时,全世界的河流源头到河口之间曲曲折折的总长度平均约是其源头到河口之间直线距离的$$ \pi $$倍.圆周率$$ \pi $$是一个无限不循环小数$$3.1415926\cdot\cdot\cdot\cdot\cdot\cdot$$,我国古代数学家对圆周率的研究做出了巨大的贡献.古算书《周髀算经》记载了``周三径一'';东汉科学家张衡进一步估算的$$ \pi $$约为$$3.16$$;三国时期的数学家刘徽用``割圆术''求得$$ \pi $$约为$$3.14$$;魏晋南北朝时期的数学家(~~ )对圆周率进行了深入的研究,他算出$$ \pi $$的值介于$$3.1415926$$与$$3.1415927$$之间,并取``约率''为$$\frac{(~ )}{7}$$、``密率''为$$\frac{(~ )}{113}$$(填分子)作为圆周率的近似值.
[ [ { "aoVal": "A", "content": "杨辉,$$22$$,$$335$$ " } ], [ { "aoVal": "B", "content": "祖冲之,$$22$$,$$355$$ " } ], [ { "aoVal": "C", "content": "韩信,$$11$$,$$355$$ " } ], [ { "aoVal": "D", "content": "赵爽,$$12$$,$$335$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->进制的性质与应用->进制的认识" ]
[ "第一空考察的是数学常识.根据题干中的信息可以知道约率和密率都是接近$$3.14$$的,所以$$3.14\\times 7=21.98\\approx 22$$,$$3.14\\times 113=354.82\\approx 355$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2131
03b864df174940e0888573ed05728ba2
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第13题2分" ]
2
single_choice
一列货车早晨$$6$$时从甲地开往乙地,平均每小时行$$45$$千米,一列客车从乙地开往甲地,平均每小时比货车快$$15$$千米,已知客车比货车迟发$$2$$小时,中午$$12$$时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有千米.
[ [ { "aoVal": "A", "content": "$$47.2$$ " } ], [ { "aoVal": "B", "content": "$$37.5$$ " } ], [ { "aoVal": "C", "content": "$$24.5$$ " } ], [ { "aoVal": "D", "content": "$$10.5$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "本题考查相遇问题; 客车比货车迟发$$2$$小时,所以客车是$$8$$时出发,到$$12$$时,经过$$4$$小时到达相遇点,而货车到达相遇点共用了$$4+2=6$$(小时),那么甲、乙两地之间的距离就可求出,用货车 速度乘相遇时货车总共用的时间加上客车速度乘相遇时客车所用时间,即$$45\\times \\left( 4+2 \\right)+60\\times 4=510$$(千米);客车行完全程所需的时间: $$510\\div \\left( 45+15 \\right)=8.5$$(小时);货车行完全程所需的时间:$$8.5+2=10.5$$(小时);客车到达甲地时,货车距乙地的距离,用全程减去货车已经行的路程,即$$510-45\\times 10.5=37.5$$(千米). 客车速度: $$45+15=60$$(千米$$/$$时) 两地距离: $$45\\times \\left( 12-6 \\right)+60\\times \\left( 12-6-2 \\right)=510$$(千米) 客车行完全程所需时间: $$510\\div 60=8.5$$(小时) 客车到达甲地时,货车距乙地的距离: $$510-45\\times \\left( 8.5+2 \\right)=37.5$$(千米) 答:客车到达甲地时,货车离乙地还有$$37.5$$千米. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3107
f47f09fec798440b8b4cab02b1c10830
[ "2018年美国数学大联盟杯五年级竞赛初赛第14题5分" ]
1
single_choice
三幕戏剧的第二幕占整个戏剧长度的$$\frac{1}{3}$$,如果第一幕是第三幕的两倍,那么第三幕占整个戏剧的几分之几? The $$2$$nd act of a $$3$$-act play is $$\frac{1}{3}$$ the length of the entire play. If the $$1$$ st act is twice as long as the $$3$$rd, what fraction of the play is the $$3$$rd act?
[ [ { "aoVal": "A", "content": "$$\\frac{1}{9}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{9}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{9}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{4}{9}$$ " } ] ]
[ "拓展思维->能力->实践应用", "Overseas Competition->知识点->计算模块->分数" ]
[ "本题题意为``三幕戏剧的第二幕占整个戏剧长度的$$\\frac{1}{3}$$,如果第一幕是第三幕的两倍,那么第三幕占戏剧的几分?'' 根据题意可得,第二幕占整个戏剧长度的$$\\frac{1}{3}$$, 因此第一幕和第三幕占整个长度的$$\\frac{2}{3}$$,第一幕是第三幕的两倍, 因此假设第三幕时长为$$N$$,第一幕的长度为$$2N$$, 因此$$N+2N=\\frac{2}{3}$$, 因此$$N=\\frac{2}{9}$$, 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2592
a72f07ff6e7545a0b6ba3d95a5ebba7a
[ "2017年江苏南京小升初工程问题第27题", "2016年北京西城区小升初四中八中分班", "2012年世界少年奥林匹克数学竞赛六年级竞赛初赛A卷第16题10分", "2016年第3届广东深圳鹏程杯六年级竞赛集训材料第一章工程问题第9题" ]
2
single_choice
甲乙加工一批零件,甲、乙合作$$24$$天可以完成.现在甲先做$$16$$天,然后乙再做$$12$$天,还剩下这批零件的$$\frac{2}{5}$$,已知甲每天比乙多加工$$3$$个零件,求这批零件共多少个?
[ [ { "aoVal": "A", "content": "$$240$$ " } ], [ { "aoVal": "B", "content": "$$280$$ " } ], [ { "aoVal": "C", "content": "$$300$$ " } ], [ { "aoVal": "D", "content": "$$360$$ " } ] ]
[ "课内体系->能力->运算求解", "拓展思维->拓展思维->计算模块->分数->分数基础->分数的认识" ]
[ "解题关键在于①甲先做$$16$$天然后乙再做$$12$$天,还剩这批零件的$$\\frac{2}{5}$$,想成甲乙合干$$12$$天,甲独干$$4$$天完成全工程的$$1-\\frac{2}{5}=\\frac{3}{5}$$,从而分别求出甲、乙工作效率.②找出甲比乙每天多加工$$3$$个零件对应的甲乙工效差,即可使问题得解. 解:甲乙合作$$12$$天完成总工程几分之几. $$\\frac{1}{24}\\times 12=\\frac{1}{2}$$ 甲工作效率 $$\\left( 1-\\frac{2}{5}-\\frac{1}{2} \\right)\\div (16-12)=\\frac{1}{40}$$ 乙工作效率 $$\\frac{1}{24}-\\frac{1}{40}=\\frac{1}{60}$$ 这批零件共多少个? $$3\\div \\left( \\frac{1}{40}-\\frac{1}{60} \\right)=360$$(个) 答:这批零件共$$360$$个. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2766
691619244b38471793c09d5cecfeccbc
[ "2017年第16届湖北武汉创新杯六年级竞赛邀请赛训练题(二)" ]
1
single_choice
如果规定$$a*b=13\times a-b\div 8$$,那么$$17*24$$的最后结果是.
[ [ { "aoVal": "A", "content": "$$218$$ " } ], [ { "aoVal": "B", "content": "$$208$$ " } ], [ { "aoVal": "C", "content": "$$198$$ " } ], [ { "aoVal": "D", "content": "$$200$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "由题意知:$$a*b=13\\times a-b\\div 8$$, 则$$17*24=13\\times 17-24\\div 8=221-3=218$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1454
9e474070cf7f4c21b31990f7be7feee0
[ "2012年IMAS小学中年级竞赛第一轮检测试题第10题3分" ]
2
single_choice
姐姐比妹妹的年龄大$$4$$岁,当两人的年龄和为$$50$$岁时,请问妹妹为多少岁?
[ [ { "aoVal": "A", "content": "$$12$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ], [ { "aoVal": "D", "content": "$$25$$ " } ] ]
[ "拓展思维->七大能力->逻辑分析" ]
[ "姐姐与妹妹的年龄差是$$4$$岁,当两人年龄和为$$50$$岁时,妹妹的年龄等于$$(50-4)\\div 2=23$$(岁). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2026
f3ad2ace7b88455989f808776636113d
[ "2014年全国华杯赛小学中年级竞赛决赛第8题" ]
3
single_choice
老师共买了$$53$$支铅笔,分给了$$A$$,$$B$$,$$C$$,$$D$$四个同学,分到最多的与最少的铅笔数相差不到$$5$$支,如果$$B$$把分到的铅笔全都给$$A$$,那么$$A$$的铅笔数是$$C$$的$$2$$倍;如果$$B$$把分到的铅笔全都给$$C$$,那么$$C$$的铅笔数是$$D$$的$$2$$倍,由此可知,$$B$$分到~\uline{~~~~~~~~~~}~支铅笔.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "设$$A$$,$$B$$,$$C$$,$$D$$分到的铅笔数分别是$$A$$,$$B$$,$$C$$,$$D$$,由$$B+C=2D$$,知$$C$$、$$D$$、$$B$$依次成等差数列,设公差为$$K$$;由$$A+B=2C$$,知$$A$$、$$C$$、$$B$$依次成等差数列,则公差为$$2K$$;由$$4$$人铅笔数相差不会超过$$4$$,所以$$K=0$$或$$1$$;若$$K=0$$,则$$4\\times B=53$$,但$$53$$不是$$4$$的整数倍; 若$$K=1$$,$$A\\textgreater C\\textgreater D\\textgreater B$$,则$$4\\times C-1=53$$,但$$54$$不是$$4$$的整数倍. 综上所述,$$B$$分到$$15$$支铅笔. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2316
eec6381edd0840e9951ade470b6ce1f2
[ "2004年第2届创新杯六年级竞赛初赛第6题", "2004年六年级竞赛创新杯" ]
0
single_choice
一辆客车和一辆货车同时从甲、乙两城的中点向相反方向行驶,$$3$$小时后客车到达甲城;货车离乙城还有$$45$$千米,已知货车的速度是客车的$$\frac{3}{4}$$;甲、乙两城之间的路程是( )
[ [ { "aoVal": "A", "content": "$$120$$千米 " } ], [ { "aoVal": "B", "content": "$$180$$千米 " } ], [ { "aoVal": "C", "content": "$$315$$千米 " } ], [ { "aoVal": "D", "content": "$$360$$千米 " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->两人相遇与追及问题->相遇问题->同时出发相向而行" ]
[ "当客车到达甲城时,货车离乙城的距离为$$45$$千米,这说明在相同的时间里,客车比货车多行了$$45$$千米。又已知货车的速度是客车的$$\\frac{3}{4}$$,那么在相同的时间里,货车所走的路程也是客车所走路程的$$\\frac{3}{4}$$,所以客车所走的路程为$$45\\div (1-\\frac{3}{4})=180$$千米,那么甲、乙两城之间的距离为$$180\\times 2=360$$千米,选D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1953
fc402a95c0f74317a1bab3c06e10c42b
[ "2020年新希望杯二年级竞赛初赛(团战)第12题" ]
1
single_choice
$$10$$名同学参加$$50$$米赛跑.跑到一半的时候,小明后面有$$5$$人,前面有$$4$$人,之后,没有人超过他,而小明又超过了$$3$$人到达终点.这次比赛没有并列名次,那么小明是.
[ [ { "aoVal": "A", "content": "第一名 " } ], [ { "aoVal": "B", "content": "第二名 " } ], [ { "aoVal": "C", "content": "第三名 " } ], [ { "aoVal": "D", "content": "第四名 " } ], [ { "aoVal": "E", "content": "第五名 " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "刚开始小明在的名次是第$$5$$名,再超过三个人,因此$$5-3=2$$,小明变成了第$$2$$名. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2857
c899e93d4c4f40b3b979930294a436f4
[ "2019年第23届广东世界少年奥林匹克数学竞赛五年级竞赛初赛第8题5分" ]
2
single_choice
把$$\frac{3}{21}$$化成小数,小数点后面第$$2019$$个数字是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$\\frac{3}{21}=\\frac{1}{7}=0.142857$$,则$$2019\\div6\\cdots\\cdots3$$, 所以小数点后第$$2019$$个数字是$$2$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2043
cb1b39ac92e6484cae9221c015880272
[ "2019年四川绵阳涪城区绵阳东辰国际学校小升初第2题3分", "2018年第6届湖北长江杯六年级竞赛初赛B卷第5题3分" ]
1
single_choice
一个三角形的三个内角的度数比是$$5:3:2$$,这个三角形是.
[ [ { "aoVal": "A", "content": "锐角三角形 " } ], [ { "aoVal": "B", "content": "直角三角形 " } ], [ { "aoVal": "C", "content": "钝角三角形 " } ], [ { "aoVal": "D", "content": "等腰三角形 " } ] ]
[ "拓展思维->拓展思维->几何模块->直线型->图形认知->图形认知角->三角形内外角度" ]
[ "$$2+3=5$$,则为直角三角形. 两个较小角之和大于最大角时为锐角三角形,等于时为直角三角形,小于时为钝角三角形,也可求出最大角,再判断. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
750
99f1c4804c984a8db3897d8497c852ad
[ "2017年第15届湖北武汉创新杯六年级竞赛决赛第7题" ]
2
single_choice
某四位数减去它的各位数字之和后得到$$200\square $$,所有这样的四位数从大到小排列,第三个数是.
[ [ { "aoVal": "A", "content": "$$2016$$ " } ], [ { "aoVal": "B", "content": "$$2017$$ " } ], [ { "aoVal": "C", "content": "$$2018$$ " } ], [ { "aoVal": "D", "content": "$$2019$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "位值原理.假设四位数是$$\\overline{ABCD}$$,那么$$\\overline{ABCD}-(A+B+C+D)=999A+99B+9C=200\\square $$,$$200\\square $$一定为$$9$$的倍数即$$2007$$,$$111A+11B+C=223$$,$$A=2$$,$$B=0$$,$$C=1$$,$$D$$从$$9$$开始从大到小排列第三个是$$7$$,即第三个数是$$2017$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2178
46cf507f3eeb4f5d8f52cf61d9ef7387
[ "2016年创新杯六年级竞赛训练题(三)第4题" ]
1
single_choice
小明从$$A$$地到$$B$$地去,去时走路每小时行$$4$$千米,返回时骑电动车每小时行$$20$$千米,求小明往返一趟平均速度为每小时(~ )千米.
[ [ { "aoVal": "A", "content": "$$6$$千米 " } ], [ { "aoVal": "B", "content": "$$6\\frac{2}{3}$$千米 " } ], [ { "aoVal": "C", "content": "$$8$$千米 " } ], [ { "aoVal": "D", "content": "$$12$$千米 " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "略 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2061
e682cf1190244aba8e9c2685f8505093
[ "2020年第25届YMO五年级竞赛决赛第18题" ]
1
single_choice
由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供$$20$$头牛吃$$5$$天,或可供$$15$$头牛吃$$6$$天.照此计算,可供~\uline{~~~~~~~~~~}~头牛吃$$10$$天.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->牛吃草问题->牛吃草转化型->草衰减牛吃草" ]
[ "设每头牛每天吃$$1$$份,则草在$$6-5=1$$天内减少$$20\\times 5-15\\times 6=10$$份,原草量为$$\\left( 20+10 \\right)\\times 5=150$$份.若吃$$10$$天,可有$$150\\div 10-10=5$$头牛. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1196
12214b967a234fa0b750734a5b8c3195
[ "2019年第24届YMO一年级竞赛决赛第8题3分" ]
1
single_choice
四棵树上共有$$40$$只鸟,若第一棵树上有$$3$$只鸟飞到第二棵树,第二棵树上有$$4$$只鸟飞到第三棵树,第三棵树有$$5$$只鸟飞到第四棵树,这样四棵树上的鸟就一样多了.第三棵树原来有只鸟.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$11$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "最后四棵树上的鸟一样多, 则每棵树有$$40\\div 4=10$$(只)鸟. 则第三棵树上的鸟飞到第四棵树之前有$$10+5=15$$(只)鸟, 则第三棵树一开始有$$15-4=11$$(只)鸟. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1139
0d7143d22d5f4a86bce356767b011ec8
[ "2021年第4届山东青岛市南区京山杯六年级竞赛决赛A卷第5题4分" ]
1
single_choice
甲、乙两人给一片花园浇水,甲单独做需要$$4$$小时完成浇水任务,乙单独做需要$$6$$小时完成浇水任务.现由甲、乙两人合作,完成浇水任务需要.
[ [ { "aoVal": "A", "content": "$$2.4$$小时 " } ], [ { "aoVal": "B", "content": "$$3.2$$小时 " } ], [ { "aoVal": "C", "content": "$$5$$小时 " } ], [ { "aoVal": "D", "content": "$$10$$小时 " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "设完成浇水任务需要$$x$$小时,依题意有: $$\\left( \\frac{1}{4}+\\frac{1}{6} \\right)x=1$$, 解得$$x=2.4$$. 故完成浇水任务需要$$2.4$$小时. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1279
991db21eabaa4e5cbafe9ad0898dc04f
[ "2014年全国迎春杯六年级竞赛初赛第2题" ]
1
single_choice
一个半径为$$30$$厘米的蛋糕可以让$$9$$个食量完全相同的人吃饱,如果半径增加了$$200 \%$$,同样高的蛋糕可以让个这种人吃饱.
[ [ { "aoVal": "A", "content": "$$25$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$81$$ " } ], [ { "aoVal": "D", "content": "$$144$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->分百应用题->量率对应已知单位1" ]
[ "由条件,面积变为原来的$${{\\left( 1+200 \\% \\right)}^{2}}$$,所以可供$$9\\times {{\\left( 1+200 \\% \\right)}^{2}}=81$$(个)人吃饱. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2396
4607d92f4a5240bca87d69536f7f28e5
[ "2020年新希望杯六年级竞赛(2月)第25题" ]
1
single_choice
【$$2020$$年六年级卷第$$25$$题】比较大小:$$1+ \frac{1}{2^{2}}+ \frac{1}{3^{2}}+ \frac{1}{4^{2}} \cdots + \frac{1}{2020^{2}}$$~\uline{~~~~~~~~~~}~$$2$$.
[ [ { "aoVal": "A", "content": "$$\\textgreater$$ " } ], [ { "aoVal": "B", "content": "$$\\textless{}$$ " } ], [ { "aoVal": "C", "content": "$$=$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}} ~\\textless{} ~\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\cdots +\\frac{1}{1999\\times 2020}$$ $$=1-\\frac{1}{2020}=\\frac{2019}{2020}$$. ∴$$1+\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}} ~\\textless{} ~1+\\frac{2019}{2020} ~\\textless{} ~2$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2224
3af94345dafa44a988e2219b1b69b9d7
[ "2009年第7届创新杯四年级竞赛初赛第6题4分", "2009年四年级竞赛创新杯" ]
3
single_choice
小红上山时每走$$30$$分钟休息$$10$$分钟,下山时每走$$30$$分钟休息$$5$$分钟。已知小红下山的速度是上山速度的$$1.5$$倍,如果上山用了$$3$$小时$$50$$分,那么下山用了( )小时。
[ [ { "aoVal": "A", "content": "1.25 " } ], [ { "aoVal": "B", "content": "2.0 " } ], [ { "aoVal": "C", "content": "2.5 " } ], [ { "aoVal": "D", "content": "2.25 " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人简单行程问题" ]
[ "上山用了$$60\\times 3+50=230$$(分),由于$$230\\div \\left( 30+10 \\right)=5\\cdots \\cdots 30$$,所以上山途中休息了$$5$$次,因此走了$$230-10\\times 5=180$$(分)。由于下山速度是上山速度的$$1.5$$倍,所以下山共走了$$180\\div 1.5=120$$(分),又由于下山每走$$30$$分钟休息$$5$$分钟,而在走完最后一个$$30$$分钟后已到达山下,不需要休息,所以下山所用总时间为$$\\left( 30+5 \\right)\\times 3+30=135$$(分),即$$2.25$$小时,选$$D$$。 " ]
D