|
"""AfriQA GOLD Passages dataset.""" |
|
|
|
|
|
import json |
|
import os |
|
from textwrap import dedent |
|
|
|
import datasets |
|
|
|
|
|
_HOMEPAGE = "https://github.com/masakhane-io/afriqa" |
|
|
|
_DESCRIPTION = """\ |
|
AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages |
|
AfriQA is the first cross-lingual question-answering (QA) dataset with a focus on African languages. |
|
The dataset includes over 12,000 XOR QA examples across 10 African languages, making it an invaluable resource for developing more equitable QA technology. |
|
""" |
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_URL = "https://github.com/masakhane-io/afriqa/raw/main/data/gold_passages/" |
|
|
|
_LANG_2_PIVOT = { |
|
"bem": "en", |
|
"fon": "fr", |
|
"hau": "en", |
|
"ibo": "en", |
|
"kin": "en", |
|
"swa": "en", |
|
"twi": "en", |
|
"yor": "en", |
|
"zul": "en", |
|
} |
|
|
|
_LANG_2_SPLITS = { |
|
"bem": ["train", "dev", "test"], |
|
"fon": ["train", "dev", "test"], |
|
"hau": ["train", "dev", "test"], |
|
"ibo": ["train", "dev", "test"], |
|
"kin": ["train", "dev", "test"], |
|
"swa": ["test"], |
|
"twi": ["train", "dev", "test"], |
|
"yor": ["train", "test"], |
|
"zul": ["train", "dev", "test"], |
|
|
|
} |
|
|
|
class AfriQAConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AfriQA""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for AfriQA. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AfriQAConfig, self).__init__(**kwargs) |
|
|
|
|
|
class AfriQA(datasets.GeneratorBasedBuilder): |
|
"""AfriQA dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
AfriQAConfig(name="bem", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Bemba dataset"), |
|
AfriQAConfig(name="fon", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Fon dataset"), |
|
AfriQAConfig(name="hau", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Hausa dataset"), |
|
AfriQAConfig(name="ibo", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Igbo dataset"), |
|
AfriQAConfig(name="kin", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Kinyarwanda dataset"), |
|
AfriQAConfig(name="swa", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Swahili dataset"), |
|
AfriQAConfig(name="twi", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Twi dataset"), |
|
AfriQAConfig(name="wol", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Wolof dataset"), |
|
AfriQAConfig(name="yor", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Yoruba dataset"), |
|
AfriQAConfig(name="zul", version=datasets.Version("1.0.0"), description="AfriQA Gold Passages Zulu dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"question_lang": datasets.Value("string"), |
|
"question_translated": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"answer_pivot": datasets.Value("string"), |
|
"answer_start": datasets.Value("string"), |
|
"answer_lang": datasets.Value("string"), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
urls_to_download = {} |
|
|
|
for split in _LANG_2_SPLITS[self.config.name]: |
|
urls_to_download[split] = f"{_URL}{self.config.name}/gold_span_passages.afriqa.{self.config.name}.{_LANG_2_PIVOT[self.config.name]}.{split}.json" |
|
|
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
splits_list = [] |
|
|
|
for split in _LANG_2_SPLITS[self.config.name]: |
|
|
|
if split == "train": |
|
splits_list.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]})) |
|
elif split == "dev": |
|
splits_list.append(datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]})) |
|
elif split == "test": |
|
splits_list.append(datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})) |
|
|
|
|
|
return splits_list |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8-sig") as f: |
|
for _, row in enumerate(f): |
|
example = json.loads(row) |
|
_id = example["id"] |
|
|
|
if not example["context"] or not example["answer_pivot"]["answer_start"]: |
|
continue |
|
|
|
yield _id, { |
|
"question_lang": example["question_lang"], |
|
"question_translated": example["question_translated"], |
|
"context": example["context"], |
|
"title": example["title"], |
|
"answer_pivot": example["answer_pivot"]["text"][0], |
|
"answer_start": example["answer_pivot"]["answer_start"][0], |
|
"answer_lang": example["answer_lang"], |
|
} |