|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv
|
|
import os
|
|
from pathlib import Path
|
|
from typing import List
|
|
|
|
import datasets
|
|
|
|
from seacrowd.utils import schemas
|
|
from seacrowd.utils.configs import SEACrowdConfig
|
|
from seacrowd.utils.constants import Tasks
|
|
|
|
_CITATION = """\
|
|
@inproceedings{kjartansson-etal-sltu2018,
|
|
title = {{Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali}},
|
|
author = {Oddur Kjartansson and Supheakmungkol Sarin and Knot Pipatsrisawat and Martin Jansche and Linne Ha},
|
|
booktitle = {Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU)},
|
|
year = {2018},
|
|
address = {Gurugram, India},
|
|
month = aug,
|
|
pages = {52--55},
|
|
URL = {http://dx.doi.org/10.21437/SLTU.2018-11},
|
|
}
|
|
"""
|
|
|
|
_DATASETNAME = "jv_id_asr"
|
|
|
|
_DESCRIPTION = """\
|
|
This data set contains transcribed audio data for Javanese. The data set consists of wave files, and a TSV file.
|
|
The file utt_spk_text.tsv contains a FileID, UserID and the transcription of audio in the file.
|
|
The data set has been manually quality checked, but there might still be errors.
|
|
This dataset was collected by Google in collaboration with Reykjavik University and Universitas Gadjah Mada in Indonesia.
|
|
"""
|
|
|
|
_HOMEPAGE = "http://openslr.org/35/"
|
|
_LANGUAGES = ["jav"]
|
|
_LOCAL = False
|
|
|
|
_LICENSE = "Attribution-ShareAlike 4.0 International"
|
|
|
|
_URLs = {
|
|
"jv_id_asr_train": "https://univindonesia-my.sharepoint.com/:u:/g/personal/marvel_martin_office_ui_ac_id/EePJbXPFbTNLlEweWxtBL6EBFCK19d6Ncj0PvAvbR9G-5A?e=bS3ELh",
|
|
"jv_id_asr_dev": "https://univindonesia-my.sharepoint.com/:u:/g/personal/marvel_martin_office_ui_ac_id/ESnRInfU0mJHq38mfHBXAqABrWWxIbnT06FiAcbWGtmvmg?e=dEZJG9",
|
|
"jv_id_asr_test": "https://univindonesia-my.sharepoint.com/:u:/g/personal/marvel_martin_office_ui_ac_id/EQGIXHDhNnVAsfkFurSdWrAB7r_jxq_PRLIbjeFG_Swlmw?e=rhBknp",
|
|
}
|
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
|
|
|
_SOURCE_VERSION = "1.0.0"
|
|
|
|
_SEACROWD_VERSION = "2024.06.20"
|
|
|
|
|
|
class JvIdASR(datasets.GeneratorBasedBuilder):
|
|
"""Javanese ASR training data set containing ~185K utterances."""
|
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
|
|
|
BUILDER_CONFIGS = [
|
|
SEACrowdConfig(
|
|
name="jv_id_asr_source",
|
|
version=SOURCE_VERSION,
|
|
description="jv_id_asr source schema",
|
|
schema="source",
|
|
subset_id="jv_id_asr",
|
|
),
|
|
SEACrowdConfig(
|
|
name="jv_id_asr_seacrowd_sptext",
|
|
version=SEACROWD_VERSION,
|
|
description="jv_id_asr Nusantara schema",
|
|
schema="seacrowd_sptext",
|
|
subset_id="jv_id_asr",
|
|
),
|
|
]
|
|
|
|
DEFAULT_CONFIG_NAME = "jv_id_asr_source"
|
|
|
|
def _info(self) -> datasets.DatasetInfo:
|
|
if self.config.schema == "source":
|
|
features = datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"speaker_id": datasets.Value("string"),
|
|
"path": datasets.Value("string"),
|
|
"audio": datasets.Audio(sampling_rate=16_000),
|
|
"text": datasets.Value("string"),
|
|
}
|
|
)
|
|
elif self.config.schema == "seacrowd_sptext":
|
|
features = schemas.speech_text_features
|
|
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["jv_id_asr_train"])},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["jv_id_asr_dev"])},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["jv_id_asr_test"])},
|
|
)
|
|
]
|
|
|
|
def _generate_examples(self, filepath: str):
|
|
tsv_file = os.path.join(filepath, "asr_javanese", "utt_spk_text.tsv")
|
|
with open(tsv_file, "r") as f:
|
|
tsv_file = csv.reader(f, delimiter="\t")
|
|
for line in tsv_file:
|
|
audio_id, sp_id, text = line[0], line[1], line[2]
|
|
wav_path = os.path.join(filepath, "asr_javanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))
|
|
|
|
if os.path.exists(wav_path):
|
|
if self.config.schema == "source":
|
|
ex = {
|
|
"id": audio_id,
|
|
"speaker_id": sp_id,
|
|
"path": wav_path,
|
|
"audio": wav_path,
|
|
"text": text,
|
|
}
|
|
yield audio_id, ex
|
|
elif self.config.schema == "seacrowd_sptext":
|
|
ex = {
|
|
"id": audio_id,
|
|
"speaker_id": sp_id,
|
|
"path": wav_path,
|
|
"audio": wav_path,
|
|
"text": text,
|
|
"metadata": {
|
|
"speaker_age": None,
|
|
"speaker_gender": None,
|
|
},
|
|
}
|
|
yield audio_id, ex
|
|
f.close() |