File size: 1,598 Bytes
b1f4275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3d691
 
 
 
 
 
 
 
 
 
 
b1f4275
ee3d691
 
 
 
 
351a897
5ff1cc7
 
351a897
 
b1f4275
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: image_id
    dtype: string
  - name: lesion_id
    dtype: string
  - name: dx
    dtype: string
  - name: dx_type
    dtype: string
  - name: age
    dtype: float64
  - name: sex
    dtype: string
  - name: localization
    dtype: string
  splits:
  - name: train
    num_bytes: 2490501038.358
    num_examples: 9577
  - name: test
    num_bytes: 351507473.24
    num_examples: 1285
  - name: validation
    num_bytes: 681758880.144
    num_examples: 2492
  download_size: 3693626934
  dataset_size: 3523767391.7419996
task_categories:
- image-classification
- image-segmentation
language:
- en
tags:
- skin_cancer
- HAM10000
pretty_name: HAM10000
size_categories:
- 1K<n<10K
---
# Dataset Card for "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions"

- Original Paper and Dataset [here](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T)
- Kaggle dataset [here](https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000?resource=download)

This is a contribution to open sourced data in hugging face for image data. Images can be obtained from above links. 

Train test split was done using a stratified splitting by cancer/diagnosis type. The code to stratify the dataset can be obtained on my github [here](https://github.com/marmal88/skin_cancer).

I do not own any rights to above images.

[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)