Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
JW17 commited on
Commit
1487735
·
verified ·
1 Parent(s): 97d0b70

Update dataset card for pixel art split

Browse files



@sayakpaul

Files changed (1) hide show
  1. README.md +40 -11
README.md CHANGED
@@ -1,25 +1,54 @@
1
  ---
 
 
2
  dataset_info:
3
  features:
4
  - name: caption
5
- dtype: string
6
- - name: jpg_0
7
- dtype: binary
8
- - name: jpg_1
9
- dtype: binary
10
- - name: label_0
11
- dtype: int64
12
- - name: label_1
13
  dtype: int64
14
  splits:
15
  - name: train
16
- num_bytes: 2898145942
17
  num_examples: 1000
18
- download_size: 2898248250
19
- dataset_size: 2898145942
20
  configs:
21
  - config_name: default
22
  data_files:
23
  - split: train
24
  path: data/train-*
25
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: openrail++
3
+ library_name: diffusers
4
  dataset_info:
5
  features:
6
  - name: caption
 
 
 
 
 
 
 
 
7
  dtype: int64
8
  splits:
9
  - name: train
10
+ num_bytes: 2929653589
11
  num_examples: 1000
12
+ download_size: 2929757570
13
+ dataset_size: 2929653589
14
  configs:
15
  - config_name: default
16
  data_files:
17
  - split: train
18
  path: data/train-*
19
  ---
20
+
21
+ # Margin-aware Preference Optimization for Aligning Diffusion Models without Reference
22
+
23
+ <div align="center">
24
+ <img src="assets/mapo_overview.png" width=750/>
25
+ </div><br>
26
+
27
+ We propose **MaPO**, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper [here] (TODO).
28
+
29
+ ## Developed by
30
+
31
+ * Jiwoo Hong<sup>*</sup> (KAIST AI)
32
+ * Sayak Paul<sup>*</sup> (Hugging Face)
33
+ * Noah Lee (KAIST AI)
34
+ * Kashif Rasul (Hugging Face)
35
+ * James Thorne (KAIST AI)
36
+ * Jongheon Jeong (Korea University)
37
+
38
+ ## Dataset
39
+
40
+ This dataset is *pixel art* split of **Pick-Style**, self-curated with [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). Using the context prompts (i.e., without stylistic specifications), we generate (1) cartoon style generation with stylistic prefix prompt and (2) normal generation with context prompt. Then, (1) is used as the chosen image, and (2) as the rejected image. The *chosen* field comprises pixel art style generations from SDXL, while the *rejected* field comprises the ordinary generations from SDXL.
41
+
42
+
43
+ ## Citation
44
+
45
+ ```bibtex
46
+ @misc{todo,
47
+ title={Margin-aware Preference Optimization for Aligning Diffusion Models without Reference},
48
+ author={Jiwoo Hong and Sayak Paul and Noah Lee and Kashif Rasuland James Thorne and Jongheon Jeong},
49
+ year={2024},
50
+ eprint={todo},
51
+ archivePrefix={arXiv},
52
+ primaryClass={cs.CV,cs.LG}
53
+ }
54
+ ```