File size: 5,928 Bytes
f2d8ab3 4e0349c f2d8ab3 c41c61c 4d76df5 9d7d5ba 62274b9 994fc81 62274b9 994fc81 4e0349c 76197ef 9212562 06ce5fa 9212562 62274b9 9212562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
---
license: mit
task_categories:
- tabular-classification
- tabular-regression
language:
- en
tags:
- HTS
pretty_name: Assay-Interfering-Compounds Finder
size_categories:
- 1M<n<10M
dataset_summary: >-
The assay-interfering-compounds finder consists of 17 different datasets. The datasets are uploaded after molecular sanitization using RDKit and MolVS.
citation: >-
@article{Boldini2024,
title = {Machine Learning Assisted Hit Prioritization for High Throughput Screening in Drug Discovery},
ISSN = {2374-7951},
url = {http://dx.doi.org/10.1021/acscentsci.3c01517},
DOI = {10.1021/acscentsci.3c01517},
journal = {ACS Central Science},
publisher = {American Chemical Society (ACS)},
author = {Boldini, Davide and Friedrich, Lukas and Kuhn, Daniel and Sieber, Stephan A.},
year = {2024},
month = mar
}
config_names:
- Boldini2024
configs:
- config_name: Boldini2024
data_files:
- GPCR_sanitized.csv
- GPCR2_sanitized.csv
- GPCR3_sanitized.csv
- channel_atp_sanitized.csv
- cysteine_protease_sanitized.csv
- IonChannel_sanitized.csv
- IonChannel2_sanitized.csv
- IonChannel3_sanitized.csv
- kinase_sanitized.csv
- serine_sanitized.csv
- splicing_sanitized.csv
- transcrption_sanitized.csv
- transcription2_sanitized.csv
- transcription3_sanitized.csv
- transporter_sanitized.csv
- ubiquitin_sanitized.csv
- zinc_finger_sanitized.csv
dataset_info:
- config_name: GPCR_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: GPCR2_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: GPCR3_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: channel_atp_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: cysteine_protease_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: IonChannel_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: IonChannel2_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: IonChannel3_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: kinase_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: serine_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: splicing_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: transcription_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: transcription2_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: transcription3_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: transporter_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: ubiquitin_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
- config_name: zinc_finger_sanitized
features:
- name: "new SMILES"
dtype: string
- name: "Primary"
dtype: int64
- name: "Score"
dtype: float64
- name: "Confirmatory"
dtype: float64
---
# Boldini2024 (Assay-Interfering-Compounds Finder)
17 Datasets that are used to employ Minimum Variance Sampling Analysis (MVS-A) to find Assay Interfering Compounds (AIC) in High Throughput Screening data.
In this study, they present the first data-driven approach to simultaneously detect assay interferents and prioritize true bioactive compounds.
Their method enables false positive and true positive detection without relying on prior screens or assay interference mechanisms, making it applicable to any high throughput screening campaign.
The datasets uploaded to our Hugging Face repository have been sanitized using RDKit and MolVS.
If you want to try these processes with the original dataset, please follow the instructions in the [Processing Script.py]() file in the maomlab/Boldini2024.
# Citation
ACS Cent. Sci. 2024, 10, 4, 823–832
Publication Date:March 15, 2024
https://doi.org/10.1021/acscentsci.3c01517 |