File size: 5,928 Bytes
f2d8ab3
4e0349c
f2d8ab3
 
 
 
 
c41c61c
 
4d76df5
9d7d5ba
 
62274b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
994fc81
 
62274b9
 
 
 
994fc81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e0349c
76197ef
9212562
06ce5fa
 
9212562
62274b9
 
9212562
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
license: mit
task_categories:
- tabular-classification
- tabular-regression
language:
- en
tags:
- HTS
pretty_name: Assay-Interfering-Compounds Finder
size_categories:
- 1M<n<10M
dataset_summary: >-
  The assay-interfering-compounds finder consists of 17 different datasets. The datasets are uploaded after molecular sanitization using RDKit and MolVS.
citation: >-
  @article{Boldini2024,
    title = {Machine Learning Assisted Hit Prioritization for High Throughput Screening in Drug Discovery},
    ISSN = {2374-7951},
    url = {http://dx.doi.org/10.1021/acscentsci.3c01517},
    DOI = {10.1021/acscentsci.3c01517},
    journal = {ACS Central Science},
    publisher = {American Chemical Society (ACS)},
    author = {Boldini,  Davide and Friedrich,  Lukas and Kuhn,  Daniel and Sieber,  Stephan A.},
    year = {2024},
    month = mar 
  }
config_names:
- Boldini2024
configs:
- config_name: Boldini2024
  data_files:
    - GPCR_sanitized.csv
    - GPCR2_sanitized.csv
    - GPCR3_sanitized.csv
    - channel_atp_sanitized.csv
    - cysteine_protease_sanitized.csv
    - IonChannel_sanitized.csv
    - IonChannel2_sanitized.csv
    - IonChannel3_sanitized.csv
    - kinase_sanitized.csv
    - serine_sanitized.csv
    - splicing_sanitized.csv
    - transcrption_sanitized.csv
    - transcription2_sanitized.csv
    - transcription3_sanitized.csv
    - transporter_sanitized.csv
    - ubiquitin_sanitized.csv
    - zinc_finger_sanitized.csv
dataset_info:
- config_name: GPCR_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: GPCR2_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: GPCR3_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: channel_atp_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64    
- config_name: cysteine_protease_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64  
- config_name: IonChannel_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64  
- config_name: IonChannel2_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: IonChannel3_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: kinase_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: serine_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: splicing_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: transcription_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: transcription2_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: transcription3_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: transporter_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: ubiquitin_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64
- config_name: zinc_finger_sanitized
  features:
  - name: "new SMILES"
    dtype: string
  - name: "Primary"
    dtype: int64
  - name: "Score"
    dtype: float64
  - name: "Confirmatory"
    dtype: float64      
    
---
# Boldini2024 (Assay-Interfering-Compounds Finder)
17 Datasets that are used to employ Minimum Variance Sampling Analysis (MVS-A) to find Assay Interfering Compounds (AIC) in High Throughput Screening data.
In this study, they present the first data-driven approach to simultaneously detect assay interferents and prioritize true bioactive compounds. 
Their method enables false positive and true positive detection without relying on prior screens or assay interference mechanisms, making it applicable to any high throughput screening campaign.

The datasets uploaded to our Hugging Face repository have been sanitized using RDKit and MolVS.
If you want to try these processes with the original dataset, please follow the instructions in the [Processing Script.py]() file in the maomlab/Boldini2024.


# Citation
ACS Cent. Sci. 2024, 10, 4, 823–832
Publication Date:March 15, 2024
https://doi.org/10.1021/acscentsci.3c01517