Datasets:
haneulpark
commited on
Commit
•
6dd50ae
1
Parent(s):
03a5048
Update README.md
Browse files
README.md
CHANGED
@@ -45,7 +45,7 @@ dataset_info:
|
|
45 |
dtype: string
|
46 |
- name: "SMILES"
|
47 |
dtype: string
|
48 |
-
- name: "
|
49 |
dtype: float64
|
50 |
- name: "SD"
|
51 |
dtype: float64
|
@@ -136,12 +136,12 @@ and inspecting the loaded dataset
|
|
136 |
AqSolDB
|
137 |
DatasetDict({
|
138 |
test: Dataset({
|
139 |
-
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', '
|
140 |
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
|
141 |
num_rows: 2494
|
142 |
})
|
143 |
train: Dataset({
|
144 |
-
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', '
|
145 |
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
|
146 |
num_rows: 7488
|
147 |
})
|
@@ -174,7 +174,7 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
174 |
"name": "cat_boost_regressor",
|
175 |
"config": {
|
176 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
177 |
-
"y_features": ['
|
178 |
|
179 |
model.train(split_featurised_dataset["train"])
|
180 |
preds = model.predict(split_featurised_dataset["test"])
|
@@ -182,8 +182,8 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
182 |
regression_suite = load_suite("regression")
|
183 |
|
184 |
scores = regression_suite.compute(
|
185 |
-
references=split_featurised_dataset["test"]['
|
186 |
-
predictions=preds["cat_boost_regressor::
|
187 |
|
188 |
|
189 |
## Aqueous Solubility Database
|
|
|
45 |
dtype: string
|
46 |
- name: "SMILES"
|
47 |
dtype: string
|
48 |
+
- name: "Y"
|
49 |
dtype: float64
|
50 |
- name: "SD"
|
51 |
dtype: float64
|
|
|
136 |
AqSolDB
|
137 |
DatasetDict({
|
138 |
test: Dataset({
|
139 |
+
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\
|
140 |
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
|
141 |
num_rows: 2494
|
142 |
})
|
143 |
train: Dataset({
|
144 |
+
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\
|
145 |
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
|
146 |
num_rows: 7488
|
147 |
})
|
|
|
174 |
"name": "cat_boost_regressor",
|
175 |
"config": {
|
176 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
177 |
+
"y_features": ['Y']}})
|
178 |
|
179 |
model.train(split_featurised_dataset["train"])
|
180 |
preds = model.predict(split_featurised_dataset["test"])
|
|
|
182 |
regression_suite = load_suite("regression")
|
183 |
|
184 |
scores = regression_suite.compute(
|
185 |
+
references=split_featurised_dataset["test"]['Y'],
|
186 |
+
predictions=preds["cat_boost_regressor::Y"])
|
187 |
|
188 |
|
189 |
## Aqueous Solubility Database
|