# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import json | |
import os | |
import datasets | |
import numpy as np | |
for _ in range(10): | |
print("LOADING SCRIPT") | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"8x8": [ | |
"https://huggingface.co/datasets/Prisma-Multimodal/segmented-imagenet1k-subset/resolve/main/images.tar.gz?download=true", | |
"https://huggingface.co/datasets/manuel-delverme/test_repo/resolve/main/annotations/{split}_annotations/mask.tar.gz?download=true", | |
"https://huggingface.co/datasets/manuel-delverme/test_repo/resolve/main/{split}.jsonl?download=true" | |
] | |
} | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class PatchyImagenet(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("0.0.1") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
BUILDER_CONFIGS = [ | |
# datasets.BuilderConfig(name="1x1", version=VERSION, description="Patchy Imagenet with 1x1 resolution (this is the original resolution)"), | |
datasets.BuilderConfig(name="8x8", version=VERSION, description="Patchy Imagenet with 8x8 resolution"), | |
# datasets.BuilderConfig(name="16x16", version=VERSION, description="Patchy Imagenet with 16x16 resolution"), | |
# datasets.BuilderConfig(name="32x32", version=VERSION, description="Patchy Imagenet with 32x32 resolution"), | |
# datasets.BuilderConfig(name="64x64", version=VERSION, description="Patchy Imagenet with 64x64 resolution"), | |
] | |
DEFAULT_CONFIG_NAME = "8x8" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"patches": datasets.Features( | |
{ | |
# "categories": datasets.Sequence(datasets.ClassLabel(names=_IMAGENET_CLASSES)), | |
"categories": datasets.Value("string"), | |
"scores": datasets.Sequence(datasets.Value("float32")), | |
# "mask": datasets.Array2D(shape=(None, None), dtype="bool"), | |
"mask": datasets.Sequence(datasets.Image()), | |
} | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
url_templates = _URLS[self.config.name] | |
split_kwargs = {} | |
for split in ["train", "test", "val"]: | |
urls = [url.format(split=split) for url in url_templates] | |
image_dir, mask_dir, metadata_file = dl_manager.download_and_extract(urls) | |
split_kwargs[split] = { | |
"meta_path": metadata_file, | |
"image_dir": image_dir, "mask_dir": mask_dir, | |
"split": split | |
} | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=split_kwargs["train"]), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=split_kwargs["val"]), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=split_kwargs["test"]), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, meta_path, image_dir, mask_dir, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
# breakpoint() | |
with open(meta_path, encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data = json.loads(row) | |
image_path = os.path.join(image_dir, data["file_name"]) | |
sample_name, _extension = os.path.splitext(data["file_name"]) | |
mask_file = os.path.join(mask_dir, "masks", sample_name + ".npy") | |
mask = np.load(mask_file).astype(np.uint8) | |
yield key, { | |
"image_path": image_path, | |
"patches": { | |
"categories": data["patches"]["categories"], | |
"scores": data["patches"]["scores"], | |
"mask": list(mask), | |
} | |
} | |