|
--- |
|
language: |
|
- it |
|
dataset_info: |
|
features: |
|
- name: volume |
|
dtype: string |
|
- name: canto |
|
dtype: string |
|
- name: tercet |
|
dtype: int64 |
|
- name: verse_number |
|
dtype: int64 |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1182296 |
|
num_examples: 14233 |
|
download_size: 458870 |
|
dataset_size: 1182296 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
# Divina Commedia Dataset |
|
|
|
## Overview |
|
|
|
The **Divina Commedia** (Divine Comedy) is an epic poem by Dante Alighieri, widely considered one of the greatest works of world literature. This dataset contains the text of the poem, organized into volumes, cantos, and verses. It is suitable for various natural language processing (NLP) tasks, such as text analysis, machine learning, and linguistic research. |
|
|
|
## Dataset Structure |
|
|
|
The dataset is structured in a hierarchical format, with the following attributes: |
|
|
|
- **volume**: The name of the volume (e.g., Inferno, Purgatorio, Paradiso). |
|
- **canto**: The name of the canto (e.g., Canto I). |
|
- **tercet**: The number of the tercet (a group of three verses). |
|
- **verse_number**: The number of the verse within the tercet. |
|
- **text**: The actual text of the verse. |
|
- **text_length**: The length of the verse text in characters. |
|
|
|
### Example Entry |
|
|
|
| volume | canto | tercet | verse_number | text |
|
|----------|-----------|---------|--------------|----------------------------------------- |
|
| Inferno | Canto I | 1 | 1 | Nel mezzo del cammin di nostra vita |
|
| Inferno | Canto I | 1 | 2 | mi ritrovai per una selva oscura, |
|
| Inferno | Canto I | 1 | 3 | ché la diritta via era smarrita. |
|
|
|
## Usage |
|
|
|
To load the dataset using the `datasets` library from Hugging Face, you can use the following code: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("maiurilorenzo/divina-commedia") |
|
|
|
# Display the first few entries |
|
print(dataset["train"].to_pandas().head()) |
|
|